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Abstract

Forecasting precipitation at very short lead times is a task that is difficult to address

through numerical weather prediction models due to the great amount of comput-

ing power required to solve the physical equations that govern the behaviour of the

atmosphere in a timely fashion. The advances in the field of deep learning and the

large amount of historical data of radar precipitation maps that are openly avail-

able make the precipitation nowcasting problem a good candidate for deep learning

solutions. To assess the potential of the U-Net neural network architecture at the

1hr time scale a comparison is made of its performance to persistence, i.e. the as-

sumption that the prediction is equal to the last available frame. The problem is

structured as a multi-class classification task over 4 precipitation intensity classes.

The model takes 6 input images of 1h cumulative precipitation of the RW product

from the RADar Online ANeichung (RADOLAN) dataset of the German weather

service (DWD) and an area of 256km×256km over northern Germany is selected.

The task is to predict the precipitation classes of the pixels of the RADOLAN image

at 6h from the first input image. It is found that the model performs better than

persistence at higher precipitation rates. For rainfall rates in [0mm/h, 0.1mm/h)

the model has a Critical Success Index (CSI) of 0.853 compared to 0.893 of persis-

tence. For rainfall rates in [0.1mm/h, 1mm/h), [0.1mm/h, 1mm/h) and [0.1mm/h,

∞mm/h) the model has better CSI than persistence (0.292 vs 0.276, 0.253 vs 0.182

and 0.191 vs 0.128 respectively). For the same classes the Heidke Skill Score (HSS)

absolute performance diminishes with increasing precipitation rate but gets better

relative to persistence (0.579 vs 0.583, 0.438 vs 0.441, 0.404 vs 0.314 and 0.321 vs

0.229). Finally, both a higher average HSS for the model compared to persistence

(0.436 compared to 0.392) and a higher average CSI (0.397 compared to 0.370) are

found. A visual inspection of the predictions suggests that the neural network is

able to infer the general structure of the precipitation field but has a tendency to

predict higher rain rates. It can be concluded that the results are encouraging and

that the application of the U-Net architecture to 1h cumulative precipitation maps

should be further investigated.
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Chapter 1

Introduction

1.1 Motivation

Current weather forecasts are based on global numerical weather prediction (NWP)

models that solve the governing physical equations of the atmosphere to predict its

future states. If the forecast happens for very short time-frames in the order of a

couple of hours to, according to some authors, 6 hours, the forecast is referred to

as nowcast. However, for these time-frames, numerical methods of predicting the

weather are bound by the incredible amount of computing power required leading to

a necessary trade-off between timeliness of the prediction and spatial resolution. For

instance the High-Resolution Rapid Refresh model (HRRR) is a National Oceanic

and Atmospheric Administration (NOAA) atmospheric model with 3km spatial res-

olution updated hourly (NOAA 2021) that covers the extension of the United States.

For predicting variables of high interest to the public such as spatial precipita-

tion distribution, optical flow algorithms are currently being used for time horizons

from 1h to 4h. These algorithms use geometrical features in the input images and

their spatial movement – for instance by using radar reflectivity maps – to extrap-

olate their position at future timestamps.

The governing equations of the physical processes behind the behaviour of the

atmosphere are of a non-linear nature. This suggests that non-linear statistical

models such as artificial neural networks – that abstract features from a historical

dataset – would be able to represent these processes. Deep learning – i.e. neural

networks with many hidden layers – has recently become a plausible method of pre-

dicting physical processes mainly driven by historical-data availability and reduced

cost of the devices used for the relevant computations (Graphics Processing Units

or GPUs).

Given the historical archives of radar precipitation maps it is clear that deep

learning could be applied to the precipitation nowcasting problem. A significant

1



2 Introduction

point in favor of investigating this approach is that, after the moderately low cost

of the training of a deep neural network model, the production of predictions (also

called inferences) are characterized by both an incredibly low cost and very short

time frames (in the order of 1sec). So much so that this can even happen consumer-

grade GPUs. This properties satisfy the timeliness requirement of precipitation

nowcasting.

1.2 State of the Art

Artificial neural networks find their origin in McCulloch and Pitts (1943) where the

authors describe them as having thresholds and weights finding that, in principle,

a neural network could compute every function that a physical computer is able

to compute. Rosenblatt (1958) proposed the first trainable neural network. The

perceptron – as it is called – has all the characteristics of modern day neural networks

except that it is very simple in its design. From this original design the multi-layer

perceptron has become the standard artificial neural network. It is also known as

fully-connected feed-forward neural network and is fundamentally made of units

grouped into layers. The information flows from the input layer to the output layer

passing through the (hidden) layers in-between. The units in a layer take as input

the signals from all the units of the layer before them, they weight them according to

specific weights that are subject to optimization, apply a non-linear function acting

as threshold and finally pass on a value to all the units of the following layer until

the signal reaches the output unit. Neural networks have found many applications

throughout the sciences due to their versatility in finding statistical relations. Their

main drawbacks are the design – no canonical designs exist for a given task – the

search for the right combination of parameters governing the behaviour of the model

(also called hyperparameters) and the computational demands compared to other

statistical methods.

Deep learning has been used in the physical sciences for predictions spanning

the entire field for quite some time now, mainly led by the general advances of

the machine learning field. A clear example of the use of deep learning in the

Earth sciences is Steffenel et al. (2021) where a deep neural network forecasted O3

advection. Reichstein et al. (2019) give a thorough overview of deep learning in

Earth Sciences.

As it pertains to the particular task of predicting the weather, many approaches

have been proposed for a variety of different tasks. Using deep learning methods

to forecast future states of the atmosphere is also called deep learning weather

prediction (DLWP). Ren et al. (2021) propose three different groupings for the ar-

chitectures that solve weather prediction problems. (1) those based on well known
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architectures from the general literature, such as autoencoders (Lin et al. 2018; Hos-

sain et al. 2015), convolutional neural networks (Qiu et al. 2017) or long-short-term

memory networks (Karevan and Suykens 2018), (2) hybrid architectures composed

of a combination of those in (1), (3) a union of deep neural networks with NWP

models to join the benefits of both theory-driven and data-driven approaches.

In the specific case of precipitation nowcasting, many different solutions have

been employed (see Ren et al. (2021) for a survey of the current methods).

Shi et al. (2015) propose a convolutional long-short-term memory (ConvLSTM)

network for precipitation nowcasting that consists of a combination of convolutional

and LSTM network structures. However, a main drawback is that as structured, it

is location invariant. For this reason Shi et al. (2017) propose the trajectory grated

recurrent unit (TrajGRU) model that adds the ability for the model to actively learn

the structure of natural motion and transformation which is location-dependent.

This kind of model has been shown to perform exceptionally well for time-series

predictions as the recurrent structure implicitly assumes a chaining of past and

future events of the series. Wang et al. (2017, 2018) also adopt variations of the

LSTM core structure proposing the predictive recurrent neural network (PredRNN)

and the improvement PredRNN++ respectively. Wang and Hong (2018) successfully

applies them to the task of precipitation nowcasting.

Google Research Agrawal et al. (2019); Sønderby et al. (2020) were both able

to successfully apply DLWP to precipitation now-casting even surpassing NOAA’s

HRRR model. The U-Net architecture, used in Agrawal et al. (2019) and Ayzel et al.

(2020), is directly inspired from the well known model introduced in Ronneberger

et al. (2015) and operate with radar precipitation images at 10min and 5min intervals

respectively. With the implementation of skip connections (He et al. 2016a,b), this

model gave good results in both applications to precipitation nowcasting. The main

idea behind this type of architecture is the division of the network into two distinct

parts, the encoder and the decoder. The first part is responsible for abstracting

features that, with increasing depth, become more high-level. The second part of

the network tries to rebuild a plausible image by using more low-level features when

the stream nears to the output layer.

1.3 Goals and Outline

The aim of this project is to investigate the use of deep learning with 1h cumulative

data of precipitation in northern Germany with a U-Net architecture model inspired

by Agrawal et al. (2019). Some intuitions from Ayzel et al. (2020) are used. The

U-Net is applied to a dataset of hourly cumulated precipitation amounts freely pro-

vided by the German weather service - Deutscher Wetterdienst (DWD). The model
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is tasked with predicting the future radar precipitation maps in the simplified form of

4 mutually exclusive precipitation classes by taking as input multiple continuously-

valued precipitation maps for the preceding timestamps. This task is also known

as multi-class classification or multi-class segmentation. To better understand the

predictive power of the model, it is compared with the persistence benchmark. This

benchmark consists of predicting a future state of the atmosphere by assuming it

remains unchanged from the last available timestamp before the prediction. Albeit

its simplicity, persistence predictions are not trivially easy to outperform. To facili-

tate the training process of the model, avoid overfitting and better the final results

– a process called regularization – this project uses methods taken directly from the

deep learning literature. The thesis will address the following questions:

(1) Does the employed neural network outperform persistence?

(2) How does model performance depend on the rainfall intensity?

(3) The model of Agrawal et al. (2019) after which this project is inspired outper-

formed persistence for all precipitation classes. Can this result be confirmed?

The second and next chapter of this thesis covers the theoretical principles

behind the production of radar precipitation maps, addresses the dataset used in

the project and its pre-processing for the specific applications to the task addressed

with the proposed model. It illustrates the workings of neural networks giving

more attention to the components of the model architecture that are used in this

project. Details are given on the deep learning regularization techniques that are

later employed. Chapter three provides the results of the project. Finally, chapter

four states the answers to the research questions, discusses and compares them with

similar studies and suggests plausible developments and open questions.



Chapter 2

Data and Methods

2.1 Data

2.1.1 Radar Principles

Radar meteorological observations are of extreme importance for a multitude of

variables. The main application of interest in this project is the use of radar for

determining the precipitation amount through the so-called reflectivity. The funda-

mental principle behind weather radars is the transmission of electromagnetic waves

at a known wavelength (typically in the range of 3-10GHz) in the microwave range

that are either absorbed or scattered and their subsequent detection. The emis-

sion power is in the order of 102W - 103W and the power received amounts to a

mere 10−16kW hence a staggering 18 orders of magnitude. Another challenge for

the receiver is the 9 orders of magnitude spanned by the incoming power depend-

ing on the difference in distance and type of possible targets that go from hail to

dust. The signal is emitted in a beam of approximately 1-2°width. Many factors

affect absorption and scattering of the incoming radiation such as shape, dielectrical

properties of the targets and the ratio of the wavelength to the size of the particle

doing the scattering. Scattering itself occurs at two different regimes, one for a high

wavelength-to-size ratio and one for low wavelength-to-size ratio; In the Rayleigh

scattering regime – which is the first of the two – scattered energy goes with D6

where d is the diameter of the scatterer. Mie scattering happens in the other case

and the governing law is not a simple function of target size.

A very important quantity in radar observations is the so-called logarithmic

reflectivity factor expressed as

Z = 10 log10

(
z

1mm6/m3

)
(2.1)

with z the reflectivity factor none other than the summation of target diameters to

5



6 Data and Methods

the sixth power, i.e.

z =

∫ ∞
0

N(D)D6dD (2.2)

where N(D) is the drop-size distribution considered to be a continuous function of

drop size D.

Z is given in dBZ (decibels relative to 1mm6/m3). Reflectivity factor z and

received backscattered power Pr are bound by

z = CPrr
2 (2.3)

with a radar constant C dependent on the charachteristics of the radar, and r the

distance to the target.

Another important factor affecting backscattered power is attenuation, i.e. the

absorption and scattering of the radar signal along the path to the target. This

affects radars with λ < 10cm the most.

The signal wavelengths most commonly used for weather radar applications are

in the S-Band (7.5cm < λ < 15cm) and C-Band (3.75cm < λ < 7.5cm). The US

National Weather Service (NWS) employs a set of 160 S-band radars in the Nexrad

(Next-Generation Radar) radar network. European weather services, on the other

hand, mostly employ C-band radars.

The assignment of part of the incoming scattered signal to a specific range (or

distance) from the radar is attained through a periodical sampling (every 0.1-1µs).

The location of the sampled volume is readily determined by knowing azimuth angle,

elevation angle and the distance from the antenna given by

r =
ct

2
(2.4)

with c being the speed of light and t the amount of time for the signal to arrive at

the target scatterer volume and come back. Additional corrections should be made

to account for the Earth’s curvature and refraction - the refractive index is a strong

function of the air density. In particular cases, such as when a strong temperature

inversion is present, the beam can make contact with the ground through strong

deflection.

Z-R relationships

The simplest relationship between logarithmic reflectivity factor Z and rainfall rate

R is based on the assumption that

Z = ARB (2.5)

with A and B being constants. Given a D6 dependence of Z and a D3 depen-

dence of R, without knowing the drop size distribution this method is prone to
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errors. Nonetheless, with reasonable assumptions (i.e. a Marshall-Pamer drop size

distribution) one obtains

Z = 200R1.6 (2.6)

A correction to this relationship is made during the RADOLAN routine (RADar-

OnLine-ANeichung Deutscher Wetterdienst (2022b)) – see Section 2.1.2.

In addition to the uncertainties of A and B in Eq. (2.5) due to not knowing the

drop size distributions, other sources of errors for the correct determination of the

rainfall rate include:

• The inability to measure the reflectivity near the ground the further away from

the radar site. Not only is there a normal increase in distance due to a slight

angle of the radar beam with respect to the horizon (≈0.8°), but the curvature

of the earth also has a significant impact on the height reached by the beam.

• Attenuation of the beam due to orography

• Rainfall rate gradients

• Errors in the calibration of the radar

• The presence of hail, thus invalidating the Rayleigh scattering approximation

Rain gauges, however, measure the actual rainfall rate on the ground but only

in the spot where they are located. The measured rainfall rate is therefore repre-

sentative for a limited area. The RADOLAN procedure, described in the following

section, combines the the real rainfall rates measured through the rain gauges with

the radar obtained precipitation maps. The final product of this procedure is a

precipitation map that retains the spatial characteristics of the precipitation distri-

bution from the weather radars but has values closer to the ground truth compared

to a precipitation map obtained only through the conversion of the radar reflectivity

to the rainfall rates with a simple Z-R relationship.

2.1.2 Radolan Dataset

The German Weather Service (DWD - Deutsches Wetter Dienst) offers a variety

of products derived from their deployed sensor suite of weather radars and rain

gauges. One of these products is the timely online calibration of radar spatial pre-

cipitation distributions (RADOLAN - RADar-OnLine-ANeichung Deutscher Wet-

terdienst (2022b)) that are used to produce quantitative radar-nowcasting distri-

butions (RADVOR - RADar - NiederschlagsVORhersage Deutscher Wetterdienst

(2022c)), as an input for the COSMO-DE Numerical Weather Prediction model and

for the convection development model (KONRAD - KONvektion Entwicklung in

RADarprodukten Deutscher Wetterdienst (2022a)).
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Sensor Field

For the production of RADOLAN precipitation distribution maps the DWD em-

ploys 17 C-Band Radars that cover the entirety of Germany. These measure the

precipitation rate indirectly by capturing the reflection of the radar signals by the

hydrometeors above ground. Fig. 2.1 shows the map and the 150km ranges of the

various Weather Radars of the DWD.

The reflectivity obtained through radar measurements can in theory be con-

verted to a precipitation amount on the ground but in practice the Z-R relationship

of Eq. (2.5) produces deviations from the true value at the ground. For this reason it

is useful to utilize the measured precipitation rate at the various rain gauges as true

values with which to produce a more value-accurate precipitation distribution. The

DWD employs its rain gauges exactly for this purpose. Fig. 2.2 shows the location

of these gauges in Germany.

To include the entire catchments covering Germany, rainfall distributions from

other radar networks and rain gauges are integrated in the RADOLAN products

covering the middle-european area.

Calibration method

The RADOLAN calibration routine is very elaborate. I will try to give a very

brief overview of its most important components and principles. Please refer to

Weigl et al. (2004) for a complete account and to Weigl (2021a) for the subsequent

updates.

The routine is applied on a grid representing 1km×1km squares or tiles of data

obtained by joining the radar reflectivity maps from the single weather radars. The

grid covers the area of Germany and part of its surroundings depending on which

Radolan product is considered. The coordinates of the tiles are obtained trhough

polar stereographic projection. The projection plane touches the Earth’s sphere at

60.0°N. The Cartesian coordinate system has dimensions of 900km×900km and is

parallel to the 10.0°E-meridian. The coordinates of the central point of the composite

are 9.0°E and 51.0°N. The Earth’s sphere is assumed to be regular and with a radius

of 6370.04 km . Fig. 2.3 shows this spatial extension and Fig. 2.4 shows a depiction

of the grid structure where the coordinates of the grid points represent the lower

left corner of each tile.

The first step in the RADOLAN calibration procedure is a pre-processing step.

Here the radar data is compensated for shadowing effects caused by the orography,

an empirically derived and more precise reflectivity-rainrate (Z-R) relation is applied

following Weigl (2015). Then the various sub-hour radar images are put together, a

statistical suppression of clutter is applied by removing hot pixels and substituting
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Figure 2.1: Radar network of the DWD composed of 18 C-Band Radars. 17 of them

are operational radars and 1 is a quality assurance radar for testing of new hardware and

software (Hohenpeißenberg). The circles depict the 150km range of the radars at their

respective centers that are used for the quantitative assessment of precipitation for the

RADOLAN products. Figure taken from Deutscher Wetterdienst (2022d).

them with an interpolated value. Finally in the last part of the pre-processing step
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Figure 2.2: Regional distribution of the rain gauges of the DWD. Squares: gauges with

hourly retrieval; circles: gauges with hourly retrieval in case of precipitation incident

(more on when these gauges are activated can be found in Weigl et al. (2004)) — Red:

data transmitted through the AMDA III system. (without border: Bavaria); blue:

other rain gauges operated by the Länder. Image from Weigl et al. (2004).

the gradients are smoothed down and a pre-calibration with the rain gauges values

is put into place (Weigl et al. 2004).

Subsequently, for the step of the actual calibration, the RADOLAN routine
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Figure 2.3: Depiction of Germany and the area covered by the RX composite (yellow).

The RX composite has the same extension as the RW composite but it represents the

uncorrected radar data in RVP6-units. The EX composite (blue) is an expansion of the

RX product; it involves a greater area taking into account more radars that are not directly

operated by the DWD. Figure reprinted from Weigl (2021b).

blends three different values for every tile of the composite. The three values are

the result of three different calibration methods.

1. The first method consists in finding a multiplicative factor for the radar map.

It is based on the assumption that the rain gauges values (RG) and the radar

precipitation values (Rad) are related through

Fi =
RRG
i

RRad
i

. (2.7)

The factors are computed for every relevant i-th rain gauge and corresponding

radar composite tile associated to it. The 8 adjacent radar composite tiles are

also taken into account. A weighted average takes place to find the interpola-

tion factors for all of the radar tiles. The weights for the average are given by

w(d) =
exp(ad)

1− exp(ad)
with a =

ln(0.5) · 20

rsearch
(2.8)

where d is the distance of the tile from a station within a search-radius rsearch

(typically 40km). This is called the factor-method.
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Figure 2.4: Depiction of the RADOLAN grid and the respective tiles in polar stereo-

graphic projection. The arrow points to the center grid point and its respective tile. The

indices i and j represent the row and column number of the tile respectively. The blue grid

points on the upper left and right corners and on the bottom right corner are shown only

to better characterize the extension of the tiles grid. Figure reprinted from Weigl (2021b).

2. The second method finds a constant to be summed to the radar map. The

assumption governing this method is that the relationship between the rain

gauges values and the radar precipitation values is of the kind

Di = RRG
i −RRad

i . (2.9)

The procedure to obtain the values of the differences for every tile is the same

as for the factor-method. We shall call this the differences-method.

3. A third method consisting of the combination of three rainfall distribution

maps (1) an interpolated precipitation distribution field on the radar values

grid obtained through ordinary kriging using the rain gauges rainfall rates,

(2) an interpolated precipitation distribution field on the radar values grid

obtained through ordinary kriging using the radar-derived rainfall rates at the

points of the rain gauges and (3) the observed radar precipitation distribution.

We shall call this the merging-method.

The combination of these three methods follows the equation

Rij =
Fij + Dij + Mij

w(Fij) + w(Dij) + w(Mij)
(2.10)
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where R is the precipitation matrix and ij are the row and column indices. F, D and

M are the results of the factor-method, the differences-method and the Merging-

method respectively. The w represent the interpolated weights for the tile ij. The

weights are derived by comparing the values obtained through the three calibrations

method with the true value at a specific subset of the rainfall-affected rain gauges.

This subset is called the control rain gauges. The weight for the best calibration

method at every control station individually is set to 1 and all the others to 0.

An interpolation from these weights to the entire grid of the radar field gives the

resulting weights (Weigl et al. 2004).

Final product

The final and best openly available product outputted by the RADOLAN calibra-

tion procedure is the so-called RW composite. This composite doesn’t include the

merging-method of calibration and therefore only employs the factor-method and the

differences-method. It is computed every hour and represents the hourly sums of pre-

cipitation as calibrated through the RADOLAN procedure (Weigl 2021b). Fig. 2.3

depicts the extension of the composite over the map of Germany and Fig. 2.5 shows

an example of a single frame of the RW composite. The rainfall rate is given in units

of 0.1mm/h for a total of 900km×900km over Germany as previously described.

The RW composite is accessible at https://opendata.dwd.de/climate_

environment/CDC/grids_germany/hourly/radolan/.

2.1.3 Dataset Selection - RADNET Dataset

I now describe the area of interest and the periods of interest for this project. I

also give a short overview of the algorithm used to produce the relevant data for the

neural network employed in this thesis. I call this selection the RADNET dataset.

Area of Interest

Given that additional measurements errors are introduced by topography, I select

a reasonably flat 256km×256km region of the RW product. This part also falls

completely inside the area where the RADOLAN routine produces actual values. I

therefore select a 256km×256km square with the upper left corner being the nearest

grid point to the coordinates 53.6°N and 8.6°E. Fig. 2.6 shows the spatial extension

of the selection on a map of Germany.

https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/
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Figure 2.5: Example of the RW product used in this thesis for the hourly sum at 10:50

UTC of the 12th September 2017. The values are in mm/h and the grey areas are those

for which the RW composite is produced. Image reprinted from Weigl (2021b).

Period of Interest

In order to not address convective type-precipitations which typically have very

short time scales, I decide to concentrate my efforts on the winter months. These

go from October through April. I also decide to divide the dataset in three parts,

I use the period from 1st October 2005 until 31st December 2017 as my training

period. The period from 1st January 2018 until 31st December 2019 is used as the

validation set and the period from 1st January 2020 until 31st December 2021 is

used as the test set (cf. Section 2.2.3).

Preprocessing for Neural Network Application

The purpose of the proposed model is the prediction of a rainfall rate distribution

map for the 256km×256km area of interest.

Instead of predicting the specific value of the rainfall rate for a tile of the area

of interest, the study after which I based this project predicts whether the rainfall

rate falls above a certain threshold (Agrawal et al. 2019). This is done for every tile

and for each of the 3 thresholds 0.1mm/h, 1mm/h and 2.5mm/h.

To make the prediction more straightforward I address the problem in an equiv-
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Figure 2.6: Area of interest used in this study. The coordinates of the upper left corner

are those of the nearest RADOLAN grid-point to 53.6°N and 8.6°E. The other corner

grid-points are obtained by going 256pixels downwards and 256pixels across. These cor-

respond exactly to 256km southwards and 256km eastwards in the RADOLAN projection

plane. The distortion present in this figure is due to the reprojection from the RADOLAN

plane to the Mercator projection plane. The figure was created using openstreetmap

(https://www.openstreetmap.org/) and geojson.io (https://geojson.io/).

alent way and decide to predict whether the rainfall rate belongs to one of 4 mutually

exclusive classes defined using the same thresholds. These are shown in Table 2.1.

class mm/h

0 [0, 0.1)

0.1 [0.1, 1.0)

1.0 [1.0, 2.5)

2.5 [2.5, ∞)

Table 2.1: Precipitation classes used in this study.

The problem formulated in this way is called multi-class segmentation or multi-

class classification.

The model, as is expected, receives a series of inputs. The elements given as

inputs to the model should contain relevant information for the model to predict the
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rainfall rate distribution. I decide to call these input elements frames. The frames

are composed of 5 channels and have a 256×256 spatial extension.

The first channel is a 256×256 selection taken from the RADOLAN RW

product (see Section 2.1.2). The values of the elements of this channel represent

precipitation rate values at a precision of 0.1mm/h as described in the previous

section. I call this channel the image.

The second and third channels are respectively the longitude and latitude of

the tiles of the image.

The fourth and fifth channels contain information about the time at which

the image was produced. The fourth channel is a normalized value for the hour

and minute at which the image was taken. Its values range from -1 to 1 where 1 is

00:00 UTC and 1 is 24:00 UTC. The fifth channel contains a normalized day of

the year at which the image was produced. It goes from -1 for the 1st of January

to 1 for the 31st of December. Agrawal et al. (2019) uses only one channel for

the time information and employs only the not-normalized time of the day. The

choice to normalize the time information is due to the fact that this facilitates a

good behaviour of the model. Deciding to add an additional channel for the time

information was done because I believe it to be relevant information for the model.

If it is not relevant then the model will learn to discard it (see Section 2.2).

Every input frame is referred to with the same timestamp of the image it con-

tains. Fig. 2.7 shows a sketch of a frame and its channels.

Figure 2.7: Sketch of a frame. The numbers 1 to 5 represent the channels. 256 stand

for the spatial dimensions.

Finally, considering that a meteorological front has a specific speed when going

through the 256km×256km area of interest, I decide to choose the number of frames
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to give as input to the model by approximating how much time it takes for a front

to traverse the selection. Hence, with an average front speed1 of ≈10m/s I obtain

6 input frames for the model. Therefore, the model is given 6 input frames taken

at 1h intervals from timestamp t until timestamp t+5 and it predicts the class of

each tile of the precipitation map for a timestamp t+6. The collection of the 6

input frames together with the ground truth classes precipitation map is called an

example (following the general use of the term in the machine learning literature)

or scene (to avoid confusion in this project with the common word example) and I

will refer to it with the timestamp of the first frame.

I discard from the dataset the scenes with no rain and the scenes where one of the

frames has a percentage of tiles of the image with missing precipitation values higher

than 10%. If that percentage is lower I fill the missing values through interpolation.

Fig. 2.8 shows a single scene and the setup as described above.

Figure 2.8: Sketch of a scene. The group of 6 frames on the left goes from time t to time

t+5. All frames are at 1h distance. These are used by the model to make a prediction

that is compared to the ground truth at time t+6. The frames together with the ground

truth make a scene.

1Front speeds have very diverse values and depend on different conditions of the system.
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2.2 Neural Networks

In this section I will go through the definition of machine learning, its subfield deep

learning and the rationale behind it (Section 2.2.1). Next, Section 2.2.2 introduces

the concepts of task, performance and experience upon which the machine learning

algorithm of this project is built. Section 2.2.3 clarifies the differences between

training, validation and testing and how they relate to hyperparameters, Section 2.2.4

in turn illustrates the concept of a neural network and its layers. Section 2.2.5

to Section 2.2.9 describe all the necessary building blocks of the neural network

architecture employed for this thesis which is illustrated in Section 2.2.10. The

subsequent sections describe the procedures with which the chosen architecture is

optimized for the problem addressed in this thesis.

2.2.1 Rationale

The drive to create machines – or more specifically algorithms – that think has

been with mankind from the very early days given that it was seen as challenge to

recreate, in a way, artificial life. With the rise of digital computers problems that

were difficult for humans but that could be written as simple formal mathematical

rules were the first to be addressed. A novice would think that tasks that come

natural to us, such as recognizing images or written or spoken words, would also be

easy for computers. However, human brains and brains in general are very complex

structures tuned and refined by millennia of evolution. It is for this reason that

those tasks are some of the most difficult tasks to solve with the help of computers

(Goodfellow et al. 2016).

The field responsible for finding a solution to these and more complex yet similar

problems goes by the name of artificial intelligence (AI)2.

The very first AI tasks to be solved at the turn of the century were tasks

with easy and formal rules; the game of Chess is a notable example. IBM’s Deep

Blue defeated the world champion Garry Kasparov in one of humanity’s most loved

strategic games (Campbell et al. 2002). However, every-day life is not made of

easy to describe rules like chess; an enormous amount of knowledge that we use

is intuitive and subjective, it comes naturally to us. In order to solve these same

problems a computer needs to be able to capture the same knowledge be it hard-

coded or from experience. The first method has been pursued by different projects

yet with unsuccessful results hence suggesting that the right path is approaching

the quest by building AI systems that form their own intuitive knowledge through

extraction from many examples. This ability goes by machine learning (ML)

2AI is not to be confused with the more specific artificial general intelligence (AGI) which

is what laymen think intuitively of when hearing AI.
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(Goodfellow et al. 2016). Very simple ML algorithms can solve important problems

but need features of the world to be given to them explicitly. For instance, logistic

regression can be used to recommend cesarean delivery Mor-Yosef et al. (1990) yet

explicit information about the patient, like the presence of a uterine scar, have to

be fed directly. These explicitly coded characteristics of the problem are also called

features. Not every task can be solved through feature engineering and ideally

a good AI system should be able to extract those features by itself. Deep learning

(DL) solves the problem of extracting high-level abstract features from raw data

by expressing them through simpler features and by ignoring variations that don’t

matter for the task at hand3 (Goodfellow et al. 2016).

Part of the first ML algorithms that have now become prominent were thought

as computational models for biological learning to study ways in which brains in

general would learn. This is the reason for which DL, between other names, is also

known as neural networks (NNs) or artificial neural networks (ANNs). As the

name suggests these are a class of machine learning models that take inspiration from

the putative workings of the brain (be it human or of another animal) (Goodfellow

et al. 2016).

Hence, neuroscience gives certain guidelines on which to build upon, the main

one being that computational units become intelligent via their interactions; these

units have a loose resemblance to neurons. Units are organized in different ways

and layers, they take inputs from various other units and produce an output that is

gated by an activation function, i.e. the unit forwards the signal only if it exceeds

a certain threshold (Section 2.2.9) (Goodfellow et al. 2016).

The following sections describe the various parts of a neural network and the

algorithm employed in this project.

2.2.2 Problem Formulation

As I stated in the previous section, machine learning algorithms – and therefore

deep learning algorithms – are programs that learn from experience. In general,

quoting Mitchell (1997): ”A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P , if its performance

in task T , as measured by P , improves with experience E”.

For this project the task T is: given a sequence of images as input I want to

predict a subsequent image that appears in the timeseries. This is also called an

image-to-image problem. However, for this thesis no prediction of an actual

precipitation is made but of categories to which the real values of the predicted

3Variations that don’t matter are for example the time of the day or the color of a car if the

task is distinguishing between a car and a motorcycle.
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pixels would belong to. Hence, this image-to-image problem can be also interpreted

as a multi-class classification problem. In fact, for all purposes it is treated as a

multi-class classification where the targets are derived by binning the ground truth

image. More concisely: for a timestamp t I give as inputs 6 radar-precipitation

images embedded into frames from t to t + 5 (cf. Section 2.1.3) to predict the

probabilities that a single pixel belongs to one of the precipitation classes of the

image at t+ 6. This probability reads, formally

Pr(Rt+6|Ft, ..., Ft+5) (2.11)

Ft represents a frame at time t and R is the binned rainfall rate target part of the

scene associated to the frames F . The outputted probability is computed for the 4

mutually exclusive classes for every tile of the 256x256 image.

The performance measures P are the cross-entropy loss, the precision, the recall,

the F-measure, the Critical Success Index and the Heidke Skill Score as defined in

Section 2.3.

The experience E is the RADNET dataset as defined in Section 2.1.3. It is

made of scenes which are obtained from the ordered series of radar precipitation

images of the RADOLAN dataset.

2.2.3 Dataset Division and Hyperparameters

In general one is interested to know the goodness of the model on new data. Hence,

the performance measures P of the previous sections are normally evaluated on a

test set. This subset of the dataset is separate from the data used for training the

model which is, in turn, called the training set (Goodfellow et al. 2016).

Machine learning algorithms, in general, posses so-called hyperparameters.

These are user-controlled settings that govern the behaviour of the algorithm but

are not learned. Nonetheless, algorithms exist to find the optimal hyperparameters

set (cf. Section 2.2.14). Frequently, parameters that could in theory be optimized on

the training set are used as hyperparameters because their optimization would lead

to overfitting (see Section 2.2.12). To address this issue, one further breaks down

the training set in training set and validation set. Although the nomenclature

overlaps with the former interpretation of training set when hyperparameters need

optimization a validation set is needed. This subset of the dataset is used to learn

the hyperparameters whilst the test set is left completely untouched as it has to

serve its role in estimating the generalization error of the model (Goodfellow et al.

2016). A typical ratio of the training and the validation set is 8:2 but if the dataset

is large enough the amount in the validation set can be reduced.



2.2 Neural Networks 21

2.2.4 Neural Networks and Layers

Neural networks are machine learning algorithms that come with different character-

istics. In this project a so-called feed-forward neural network is employed in which

the information flows only in one direction from the input to the output without

coming back to itself with feedback connections.

The structure of a neural network has at its core a fundamental element called

unit. Units are vector-to-scalar functions that precisely resemble a neuron’s workings

because they take inputs from multiple other sources (neurons) and are activated to

a different degree based on these weighted inputs (Goodfellow et al. 2016). Multiple

neurons acting in concert after the same number of connections from the input are

organized in a so-called layer where the input units form the input layer and the

output units form the output layer. Additional layers that fall in between the input

and the output layers are called hidden layers and their presence renders a neural

network deep4 (Goodfellow et al. 2016). The depth of the network is given by the

number of layers, while its width corresponds loosely to the number of neurons

composing a layer.

Finally, another parallelism with neuroscience is drawn by using activation func-

tions. These functions are non-linear and differentiable5 and represent a threshold

that the input signal to a unit has to overcome in order to activate said unit (see

Section 2.2.9).

Neural networks come in different shapes and employ different layers and com-

ponents; the specific set of layer choices and other characteristics that make the

network are collectively known as the architecture of the network.

The next sections contain the building layers and other architectural charac-

teristics of the neural network used in this thesis up until Section 2.2.10 where the

architecture is presented to its fullest.

2.2.5 Fully Connected Layers

One of the conceptually simplest architecture for a layer in a neural network is built

by connecting every unit in a layer to every unit in the layer directly after. Each

connection has an associated weight and bias term that modulate the activation of

a single unit based on the signals coming from the units before it (Bishop 2006).

The mathematical expression for a hidden layer would be through a linear com-

4The term deep learning comes, in fact, from Deep Neural Network.
5Activation functions must only be differentiable in the regions where a gradient for the opti-

mization procedure must be computed. Functions that are normally utilized, such as the Rectified

Linear Unit, are not differentiable in some points. This problem is usually of no concern since the

probability that the function is evaluated at its non-differentiable point is negligible. Even if this

were to happen, the issue could be defined away by simply taking the right derivative.
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bination of its inputs like:

h = g
(
W>x+ b

)
(2.12)

where W is the weights Matrix, x the input vector, b the bias vector and g a dif-

ferentiable non-linear activation function (Bishop 2006; Goodfellow et al. 2016). An

example of which is the common function g(z) = max{0, z} also known as Rectified

Linear Unit (ReLU). More in Section 2.2.9. A single layer is rarely a good solution

and invariably one finds itself stacking multiple of these fully connected layers one

after the other (Goodfellow et al. 2016). When multiple layers are employed then

the architecture becomes mathematically

h(1) = g(1)
(
W (1)>x+ b(1)

)
(2.13)

for the first layer. Changing this with the second layer produces

h(2) = g(2)
(
W (2)>h(1) + b(2)

)
(2.14)

The subsequent layers are straightforward as is the output layer:

y = g(n)
(
W (n)>h(n−1) + b(n)

)
(2.15)

where n is the number of hidden layers in the network (Goodfellow et al. 2016).

2.2.6 Convolutional Layers

Convolutional layers as an architectural solution are employed when the data has

a known grid-like topology as is the case for 1-D grids like time-series or 2-D grids

like simple pictures. The intuition underpinning this architecture is that spatially

(or temporally) adjacent data-points are highly correlated. A neural network is said

to be convolutional if it employs at least one convolutional layer instead of the

vanilla matrix multiplication. The name convolution comes from the mathematical

operation involved in this type of layers, i.e. convolution (Goodfellow et al. 2016).

Most generally convolution is a mathematical operation on two functions with

real-valued argument. It’s intuitive interpretation is the weighting average of a

function x by a weighting function w. The mathematical definition hereof is the

following intergral:

s(t) =

∫
x(a)w(t− a)da. (2.16)

In order for the output to be a weighted average w needs to be a valid probability

density function. However convolution is defined for more general situations and it

is a valid operation as long as the integral in Eq. (2.16) is defined.

Convolution has also its specific mathematical notation:

s(t) = (x ∗ w)(t). (2.17)
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In the case of convolution x is called the input, w the kernel and the output

is called the feature map.

The functions in Eqs. (2.16) and (2.17) are continuous and are therefore not

a reasonable representation of real-world cases. Real-world data is, unsurprisingly,

given in discrete intervals like for instance small timesteps in a time-series or different

pixels in an image. One can obtain the discrete version of the convolution operation

by employing a discrete sum in place of the integral:

s(t) = (x ∗ w)(t) =
∑
a

x(a)w(t− a)∆a. (2.18)

with ∆a to be interpreted as a weighting window (Goodfellow et al. 2016; Bishop

2006). Both the input and the kernel are normally multidimensional arrays (some-

times also called tensors) and the values of the latter are learned through the

learning algorithm. The fact that both have to be stored justifies the reasonable

assumption that the functions are 0-valued everywhere on the domain upon which

they are defined expect where their values are stored (Goodfellow et al. 2016) making

the summation finite.

In real-world DL applications convolution is applied on multi-dimensional ten-

sors and on multiple axis. The simplest case arises for 2-D tensors like images,

therefore the 2-dimensional version of Eq. (2.18) with an image I as input and a

2-dimensional kernel K is

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.19)

that, given the commutativity of the convolution operation is equivalent to

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, i− n)K(m,n) (2.20)

The commutativity of convolution is due to the fact that the kernel is flipped with

respect to the input, i.e. when indices increase in one they decrease in the other.

Modern libraries, however, implement what is called cross-correlation. This oper-

ation is closely related to convolution and in fact it’s the same without a kernel-flip

(Goodfellow et al. 2016). Its mathematical expression reads

S(i, j) = (K ? I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n); (2.21)

Note the star instead of the asterisk for the cross-correlation. The learning algorithm

will learn the values of the appropriate values of the kernel. The kernels resulting

from a neural network using cross-correlation will be flipped with respect to the val-

ues learned if the implementation is a convolution (Goodfellow et al. 2016). Fig. 2.9

shows a case of a 2-D discrete convolution without Kernel flipping.
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Figure 2.9: 2-D convolution without kernel flipping. The ouptput is restrictied to the

places where the kernel fits entirely on the input. The arrows indicate how the indicated

output element is obtained from the combination of the selected region of the input tensor

and the kernel tensor. Image taken from Goodfellow et al. (2016).

Since the appropriate values are the subject of learning by the algorithm, the

kernel-flip is irrelevant.

Advantages

As it can be intuited from Fig. 2.9 and as already stated, elements of a tensor that

are near each other will influence the corresponding output more than elements that

are far from each other. The three main advantages that arise from how convolution

is built are sparse interactions, parameter sharing and equivariant representations.

Sparse interactions

Fully connected layers (Section 2.2.5 and Eqs. (2.13) to (2.15)) work through a

matrix by matrix multiplication of equal dimensions. Sparse interactions in convo-

lution arise due to the kernels being much smaller than the input matrix, for instance

edges in an image of ∼ 106 pixels can be easily detected with kernels of ∼ 102 pixels

(Goodfellow et al. 2016). Smaller kernels mean fewer values to store and increased
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efficiency6.

Parameter sharing

During a simple matrix multiplication, i.e. the fully connected case, each and every

element of the weight matrix is used only once. In contrast, during convolution each

parameter of the kernel matrix is used multiple times as the kernel shifts through

the input grid. The boundaries of the image are particular in this regard but depend

on implementation choices. The runtime is not affected by this property since the

number of operations is still O(k × n) where k is the number of elements in the

kernel and n the number of elements of the input. However, the memory footprint

is affected substantially given that the number of weights to be stored is now k

instead of m×n, which is the dimension of the weight matrix in the fully-connected

case (Goodfellow et al. 2016). Fig. 2.10 depicts the workings of parameter sharing.

Figure 2.10: The top graph is a representation of a convolution with kernel made of

k = 3 elements and an input x of n = 5 elements. The black arrows are associated with

the central element of the kernel. The bottom graph shows the fully-connected case. Here

the black arrow represents the central element of the n ×m = 5 × 5 weight matrix W .

Image taken from Goodfellow et al. (2016).

Equivariance to translation

The property of equivariance to translation is a consequence of the parameter shar-

ing property: given that a kernel is applied everywhere on the input, the features

6Considering m inputs and n outputs the simple matrix multiplication has m× n parameters,

O(m×n) runtime for every example. However, with convolution limiting the number of connections

to k for each input, with a much smaller k, the number of parameters and the computing time

decrease to k × n and O(k × n) respectively (Goodfellow et al. 2016).
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it detects can be detected anywhere. The term equivariance comes form the math-

ematical equivariance of a function with respect to another function. A function f

is said to be equivariant to a function g if and only if f(g(x)) = g(f(x)). If g is a

function that shifts the input by some distance, we have the case of the equivariance

to translation of features to be detected by the kernel f (Goodfellow et al. 2016).

Indifference to input size

One last advantage of convolution is its indifference to the input’s size. This is a

trivial consequence of how kernels are applied to the input. Fully connected layers

always need the same input dimensions given that the weight matrix W has a fixed

size (Goodfellow et al. 2016).

2.2.7 Pooling and Unpooling

Pooling layers are typically employed after a convolution layer and consist of units

that substitute an area around a specific location with a summary value such as a

maximum (max pooling) or an average (average pooling) LeCun et al. (2015); these

two are the most frequently used pooling functions. Other functions exist7 and are

sometimes employed but are not described for simplicity. Given that the averaging

and maximum functions are parameter-free no learning occurs in these layers.

Given that a summary statistic is produced over a range of pixels, the pooling

areas can be spaced by k pixels instead of just 1. This, in turn, reduces the number

of subsequent units by a factor of approximately k. An example of this mechanism

is shown in Fig. 2.11.

Summary operations make the network approximately invariant to small trans-

lations of the input giving more importance to the approximate location and ex-

istence of a feature than its precise location in the input grid (Goodfellow et al.

2016).

As shown in Fig. 2.11 the pooling operation with a stride makes the output

height and width smaller than the input dimensions. Given that for the architecture

employed in this project it’s essential for the output to be of the same dimensions

as the input (see Section 2.2.10) so-called unpooling layers are used. These layers

neither add, nor remove information. When the unpooling operations are done

through an upsampling to the nearest neighbour, every original pixel is substituted

with a new k×k matrix where every element of the new matrix is equal to the value

of the pixel it originated from.

7Some of these functions are L2 norm pooling and distance-weighted average pooling
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Figure 2.11: Comparison between average pooling and max pooling of a 4 × 4 tensor.

The different colors identify the 2 × 2regions over which the average is computed. As is

common for pooling the kernel has a stride, i.e. it jumps, by its width instead of going

through every pixel. Image taken from Aljaafari (2018).

2.2.8 Skip Connections

Generally more connections are thought to add additional degrees of freedom to

a network that give it the possibility to fit much more intricate functions. An

hypothesis connected to this seemingly correct assumption is that if errors would

arise from adding more layers they would manifest in the form of overfitting. Further,

if a layer is not really needed, the network should in theory be able to fit an identity

mapping with the non-beneficial layers. However, this has been shown to not be the

case in He and Sun (2015) and in Srivastava et al. (2015) where additional layers

lead to degradation not due to overfitting.

As in He et al. (2016a); Srivastava et al. (2015), the problem was identified

to be a difficulty by the layers to allow a flow of unaltered information to pass

through the network. The simplest solution is given by fitting a residual mapping

for smaller building blocks of the network instead of the general mapping. This

adds no computational cost and is a proven method to address degradation in deeper

networks effectively (He et al. 2016a). Formally that would amount to fitting F(x) =

H(x)−x and obtaining the desired mapping H(x) by simple summation F(x) +x.

Hence, in the extreme case, to obtain the identity mapping, the weighted layers

would only need to reach 0. Particular implementations of this fundamental idea

were further discussed by He et al. (2016b). For a graphical representation see

Fig. 2.12.

In the case of U-Nets used in this project (see Section 2.2.10 for the implemen-

tation), it is good practice to adopt long range skip connections to pass information
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Figure 2.12: The representation of a residual block that fits a desired mapping H(x) by

making the tunable (weight) layers optimise for the residual F(x) := H(x) − x. ”relu”

stands for the correpsonding activation function (cf. Section 2.2.9). Example and image

taken from He et al. (2016a).

from a downsampling8 block to an upsampling9 block (Drozdzal et al. 2016). The use

of long-range and short-range skip connections for image segmentation was linked to

both better performance and faster convergence (Drozdzal et al. 2016). Both kinds

of skip connections can be achieved either by summation – therefore applying He

et al. (2016a) also to long-range skip connections – or by concatenating the relevant

information as in Shelhamer et al. (2017).

Further details on the specifics of the implementation in this project will be

discussed in Section 2.2.10.

2.2.9 Activation Functions

Activation Functions are an essential building block of neural networks due to the

fact that they introduce a necessary non-linearity in the architecture. Were they

linear then the neural network would become a combination of only linear compo-

nents which is equivalent to an architecture without hidden layers (Bishop 2006).

There is no canonical choice of activation functions, the only requisites are that they

be (1) non-linear and (2) differentiable (Bishop 2006; Goodfellow et al. 2016). The

appropriate activation function for hidden layers is normally chosen by looking at

its properties like ease of computation and lack or presence of saturation. However,

for the output layer the choice of the activation function and the corresponding loss

function are tightly coupled to the problem being solved (Bishop 2006).

Many activation functions have risen in popularity; the three most common

for hidden layers to the day of writing according to Papers with Code (2022) are

8See Section 2.2.10
9See Section 2.2.10
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the Rectified Linear Unit, the Sigmoid activation function and the Tanh activation

function. I will address only a variant of the first one: the Leaky Rectified Linear

Unit. As for the activation function for the output unit – which are sometimes called

output functions – the Softmax activation function is presented.

Leaky Rectified Linear Unit (LeakyReLU)

The LeakyReLU activation function has nearly all the properties of the ReLU ac-

tivation function of which it is a variation (Maas et al. 2013), i.e. no saturation,

ease of computation of the gradient and avoidance of the vanishing gradient prob-

lem. The only difference is that it is not zero for negative values but linear with a

positive – yet small – slope. Formally it’s defined as,

LeakyReLU(x) =

x x ≥ 0

a x else
with a ∈ R+ (2.22)

The value of a in Eq. (2.22) is traditionally small and in the order of 0.01

however it can be easily set manually and reach higher values (Xu et al. 2015).

The implication of using the LeakyReLU activation function is that there is a

gradient, albeit small, for negative values of the input which allows for updating to

take place during back-propagation. Computationally this is very efficient compared

to alternatives such as sigmoid and tanh.

Softmax

The Softmax activation function is normally used in the very last layer of a neural

network – also called the output layer – to address multi-class classification problems.

For problems of this sort one needs to produce a vector ŷ with

ŷi = P (y = i | x) (2.23)

where every element is between 0 and 1 and where the sum of the elements is 1

therefore representing a valid probability distribution. In the practical application

of a neural network the last layer before the output layer, being linear, produces an

unnormalized log probability10 vector as in

z = W>h+ b (2.24)

with

zi = log P̃ (y = i | x). (2.25)

10More on log probabilites and their relevance in Section 2.2.11
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This corresponds to the unnormalized log probability that the input x belongs to

the class i.

The definition of the Softmax function comes from the need to obtain a nor-

malized probabilty distribution ŷ by exponentiating and normalizing z

softmax(z)i =
exp zi∑n
j=1 exp zj

= ŷi (2.26)

with i = 1, ..., n (Goodfellow et al. 2016). This in turn corresponds to the normalized

probability that the input x belongs to the class i.

In the case of image segmentation, as is for this project, for every pixel of the

output image there is an associated z ∈ Rn on which the Softmax function can be

applied to categorize every pixel.

2.2.10 U-Net encoder-decoder

The task of semantic segmentation, that is the assignment of classes to pixels that

belong to the same group, is an ubiquitous problem in the machine learning literature

and goes from applictaions such as scene recognition (Badrinarayanan et al. 2017) to

identifications of neuronal structures in biomedical images as in Ronneberger et al.

(2015). The architecture in Ronneberger et al. (2015) – a U-Net – was proposed

as an extension of of the first fully convolutional network architecture for semantic

segmentation by Shelhamer et al. (2017).

Implementation

An encoder-decoder main working is to (1) reduce the spatial dimension of the input

and abstract information into a latent space, subsequently (2) return the information

to the original format so that it can be interpreted (Goodfellow et al. 2016). This

can be done through convolutional layers and, if nothing other than convolution

is involved, this architectural choice can be labeled as fully convolutional encoder-

decoders. A specific implementation thereof is the U-Net architecture (Ronneberger

et al. 2015) adopted and re-adapted in this project for the image-to-image prob-

lem applied to precipitation nowcasting and inspired from Agrawal et al. (2019).

Fig. 2.63 shows the architecture I employ as described in the following paragraphs.

Encoder

The encoder starts with a basic block that is composed of a convolution, followed

by a batch normalization layer, a non-linear activation function of the LeakyReLU

type and an additional convolution.

Subsequently a number of down sampling blocks follow. Each block is made

of, in order, a batch normalization, a Leaky ReLU, a max pooling layer – where the
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actual downsampling occurs – another batch normalization layer, a Leaky ReLU and

a final convolution.

After the down sampling blocks of the encoder and before the decoder I employ

an additional basic block that serves as a bottleneck.

For the short range skip connections’ architecture there are no explicit descrip-

tions in Agrawal et al. (2019) other then a reference to Drozdzal et al. (2016) and

He et al. (2016a). Since both prefer summation rather than concatenation for skip

connections, I choose the former. As for the layers in the path followed by the

identity mapping, keeping in line with He et al. (2016b) and Drozdzal et al. (2016)

I use a very simple average pooling for the reduction of the spatial resolution and

a 1x1 convolution to adjust the number of feature maps so that a summation is

possible after a skip connection. I also add a batch normalization layer to mitigate

the batch-to-batch variance for small batches.

After every block in the encoder – and before the summation with the identity

mapping – the intermediate result is stored to be used in a long-range skip connection

to the corresponding block in the decoder. Agrawal et al. (2019) does not explicitly

state whether the long range skip connection is built by taking the output of an

encoding block right before the identity mapping is added, however, an image of the

architecture in a related blog post11 made by the authors suggests this to be the

case.

Decoder

The structure of the decoder is similar to the one of the encoder. However, an

important difference exists: for the purpose of increasing the spatial dimensions it

has upsampling layers instead of a max pooling layers.

The composition of the upsampling blocks is: a nearest neighbor upsampling

layer, a batch normalization layer, a LeakyReLU activation layer, a convolution and

again batch normalization, LeakyReLU and convoluion.

The short skip connections are implemented for the decoder around every up-

sampling block. Compared to their counterparts in the encoder section, these skip

connections employ the same layers for the same purposes but with average pooling

substituted by a nearest neighbor upsampling layer. Table 2.3 shows the feature

maps for the blocks described in the last two sections.

2.2.11 Network Optimization and Training Algorithm

In this section I will address the principal framework – called maximum likelihood

estimator – through which a set of neural network parameters θ are found such

11https://ai.googleblog.com/2020/01/using-machine-learning-to-nowcast.html
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Figure 2.63: Architecture of the U-Net used for this project as in (Agrawal et al. 2019).

The name comes from the shape it has when displayed in layers. This specific example

has the depth hyperparameter – that controls the number of layers – set to 3. The left

part of the network is called the encoder whilst the right part is the decoder. The thicker

and fainter yellow layers are convolutions with a value standing for the number of feature

maps. The number of feature maps is also another hyperparameter, which in this case, is

32. For every layer the number of feature maps doubles. The number of feature maps of

the convolutions of the last part of the decoder are denoted with the letter O. In my case

they are equal to the number of classes of the output. The bright yellow layers are batch

normalization layers and are denoted with the letter N. The orange layers stand for the

activation function, with the letter A, which in my case are LeakyReLUs. The red layers

are max pooling operations that reduce the spatial dimensions. The blue layers represent

nearest neighbour upsampling and invert the pooling process. The arrows represent the

flow of information; the ones connecting the blocks from the encoder to the sister blocks

of the decoder are the long skip connections. The skip connections are implemented as

summations. The Softmax output layer, depicted in purple, has a number of output

channels equal to the number of classes. Short-range skip connections are not depicted

for simplicity; they would skip every major block. In this picture every block is separated

from other blocks by arrows. Table 2.2 contains details on the various parameters used

for the differente layers, included short-range skip connections.

that they minimize an error measure called the loss function, i.e. the deviation of the

estimate from the target data-points. I will also discuss how this framework allows us

to obtain an appropriate loss function given a certain problem. Moreover, the actual
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U-Net Building Blocks

Layer name Mathematical operation Hyperparameter Value

Conv2d Convolution

kernel size 3

stride 1

padding 1

dilation 1

#feature maps cf Table 2.3

BatchNorm2d Batch Normalization momentum 0.1

LeakyReLU Leaky ReLU negative slope 0.01

MaxPool2d Max Pooling
kernel size 2

stride 2

Upsample Upsampling
scale factor 2

mode nearest neighbor

Softmax Softmax Eq. (2.26) N/A N/A

Table 2.2: An overview of the different layers that are used as building blocks for the

architecture of this project. The name used is the same as the one that appears in the

machine learning library pytorch in order to favor comparability. An account on how

these blocks are put together to form the final architecture is given in both Fig. 2.63 and

Table 2.3.

training algorithm and its components as well as the particular implementation used

in this project are shown.

Maximum Likelihood Estimation

The maximum likelihood principle is a method that allows to determine the appro-

priate functions that make good estimators for a specific model, i.e. it indicates a

clear loss function to minimize (Goodfellow et al. 2016). In simple terms (1) a model

must be assumed (2) from that model the likelihood function is derived – that is

the probability that the model results in the given data (3) the likelihood function

is maximised (or something equivalent).

Let Y = {y(1), ...,y(m)} be the family of all the observed targets and X =

{x(1), ...,x(m)} representing all the m inputs drawn from the distribution. I call

the tuple (y(i),x(i)) an example. I also define Y = (y(1), ...,y(m)) and X =

(x(1), ...,x(m)) to be the input and output tensors respectively.

Let us have a family of model probability distributions with parameters θ

pmodel(y|x;θ) (2.27)

for the variables y and x with images being respectively Y and X. I use this family
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Block architectures

Block name Layer name Input feature maps Output feature maps

Basic block

Conv2d C C

BatchNorm2d C C

LeakyReLU C C

Conv2d C C

Downsampling block

BatchNorm2d C C

LeakyReLU C C

MaxPool2d C C

BatchNorm2d C C

LeakyReLU C C

Conv2d C 2C or IF for first block

Down skip connection

1x1Conv2d C 2C

AvgPool2d 2C 2C

BatchNorm2d 2C 2C

Upsampling block

Upsample C C

BatchNorm2d C C

LeakyReLU C C

Conv2d C C/2

BatchNorm2d C/2 C/2

LeakyReLU C/2 C/2

Conv2d C/2 C/2 or K for last layer

Up skip connection

Upsample C C

1x1Conv2d C C/2

BatchNorm2d C/2 C/2 or K for last layer

Final layer Softmax K K

Table 2.3: Summary of the number of feature maps associated with each of the layers

of the different blocks for the architecture of this project. C is a place holder value for

which to compute the other number of feature maps for every layer of the same block. IF

stands for the hyperparameter Initial Features which is the number of feature maps of the

output of the first downsampling block. K is the number of classes of the task. In this

project K=4.

to estimate the probability distribution

pdata(y|x). (2.28)
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The likelihood function12 is given by

L(θ|y; x) = pmodel(y|x;θ) (2.29)

which for the case of i.i.d.13 examples means

L(θ|Y ;X) = pmodel(Y |X;θ) =
m∏
i=1

pmodel(y
(i)|x(i);θ). (2.30)

one then has the definition of maximum likelihood estimator for θ as in

Goodfellow et al. (2016). It reads

θML = arg max
θ

pmodel(Y |X;θ) (2.31)

and by assuming that the examples are i.i.d. one can rewrite this expression as

θML = arg max
θ

m∏
i=1

pmodel(y
(i)|x(i);θ). (2.32)

However, Eq. (2.32) has a clear issue when implemented numerically since prob-

abilities have values 0 ≤ pmodel(y
(i)|x(i);θ) ≤ 1 and their product can become really

small causing numerical underflow. To facilitate the numerical optimization one can

use a monotonically increasing function and obtain an equivalent numerical opti-

mization problem. The function commonly used is the logarithm that converts a

product into a sum. One obtains log likelihoods instead of likelihoods:

θML = arg max
θ

m∑
i=1

log pmodel(y
(i)|x(i);θ). (2.33)

Conveniently a sum of logarithms for small pmodel will reach negative values instead

of the very small but positive values had it been a product (Goodfellow et al. 2016).

I will now show how maximizing the likelihood is equivalent to a minimization

of the so-called cross-entropy.

Cross-Entropy

This subsection is written after Cover and Thomas (2006) – where a more precise

account on information-theory can be found – and Goodfellow et al. (2016).

One first defines a measure of the uncertainty of a random variable, this mea-

sure is normally called Shannon entropy. For a discrete random variable x with

probability mass function p(x) it reads as follows

H(x) = −
∑
x

p(x) log p(x) (2.34)

12See Rossi (2018) for a precise account.
13Independent and identically distributed.
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which can be interpeted as the expected value of a random variable log 1
p(x)

with x

having a probability mass function p(x). One obtains

H(x) = Ex∼p

[
1

log p(x)

]
= −Ex∼p[log p(x)], (2.35)

which is also sometimes written as H(p).

As stated, the entropy of a random variable measures the amount of information

needed to describe the random variable. A related concept is the relative entropy,

which is a measure of the dissimilarity between two probability distributions.

Let p(x) and q(x) be two probability mass functions. Their relative entropy or

Kullback-Leibler divergence is defined as

DKL(p||q) =
∑
x

p(x) log
p(x)

q(x)
(2.36)

which, in a similar fashion to entropy it can be interpreted as the expected value of

a random variable equal to log p(x)
q(x)

where x follows a distribution p. This means

DKL(p||q) = Ex∼p

[
log

p(x)

q(x)

]
= Ex∼p[log p(x)− log q(x)]. (2.37)

The KL divergence, although sometimes referred to as a distance between two dis-

tributions, is not really a distance because it’s not symmetric, i.e. DKL(p||q) 6=
DKL(q||p).

The cross-entropy between two distributions p and q is similar to the KL diver-

gence and is defined as

H(p, q) = H(p) +DKL(p||q) (2.38)

hence, by virtue of Eqs. (2.35) and (2.37)

H(p, q) = −Ex∼p[log q(x)] (2.39)

which is equivalent to

H(p, q) = −
∑
x

p(x) log q(x). (2.40)

It’s clear from Eq. (2.38) that minimizing the cross-entropy with respect to q is equal

to minimizing DKL(p||q) with respect to q.

Let p(x) be the empirical distribution p̂data(x) as implied by the dataset and

defined as the relative frequency of x in a set of n samples of the type x(i), that is:

p̂data(x) =
1

n

n∑
i=1

δx(x(i)) (2.41)
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and let q(x) be the model distribution pmodel(x;θ). By inserting the newly defined

p and q in Eq. (2.40) one obtains

H(p̂data(x), pmodel(x;θ)) = −
∑
x

p̂data(x) log pmodel(x;θ) (2.42)

= − 1

n

n∑
i=1

log pmodel(x
(i);θ) (2.43)

which applied to the supervised-learning case and compared to Eq. (2.33) and al-

lows us to conclude that the maximization of the likelihood is equivalent to the

minimization of the cross-entropy between the model distribution and the empirical

distribution. This reads

θML = arg max
θ

m∑
i=1

log pmodel(y
(i)|x(i);θ) (2.44)

= arg min
θ
− 1

m

m∑
i=1

log pmodel(y
(i)|x(i);θ) (2.45)

= arg min
θ

H(p̂data(x), pmodel(x;θ)). (2.46)

Since in general one wants to minimize a so-called cost function, the

maximum-likelihood principle gives us a natural cost function for a certain model

distribution. This cost function is sometimes referred with the symbol J(θ)

and is simply the negative of the log-likelihood of the model, equivalent to the

cross-entropy.

In the next section I will derive the expression for the log-likelihood for the

multi-class classification problem.

Maximum likelihood for the multi-class classification problem

The maximum likelihood principle can be easily applied to the multi-class classifica-

tion problem. For this family of problems one main assumption is needed: that the

target vector yi ∈ RK for the i-th example follows a categorical distribution with

K-classes that are mutually exclusive. The distribution has the following form

p(yi|zi,θ) =
K∏
c=1

π(yi = 1c|zi,θ)yic =
K∏
c=1

πyicic (2.47)

with the single modelled probabilities πic = π(yi = 1c|zi,θ) that, given the i-th

feature vector zi and the model parameters θ, the i-th element belongs to class

c ∈ {1, ..., K} as encoded in a one-hot vector 1c – a vector with one element equal

to 1 and all other elements equal to 0 – of length K (Goodfellow et al. 2016; Bishop
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2006). Also, we have the target vector yi = (yi1, ..., yic, ..., yiK) being too a one-hot

vector with 1 in the position c corresponding to the actual class of the example.

The likelihood for a categorical distribution with m examples, following

Eq. (2.30), reads

L(θ|Y ;X) =
m∏
i=1

pmodel(y
(i)|x(i);θ) =

m∏
i=1

K∏
c=1

πyicic (2.48)

and since on wants to minimize a cost function J(θ), that is defined as the negative

of the log-likelihood according to the maximum likelihood principle, it follows

J(θ|Y ,Z) = − logL(θ|Y ,Z) = −
m∑
i=1

K∑
c=1

yic log πic (2.49)

with the feature tensor Z = (z(1), ...,z(m)) and the target tensor Y = (y(1), ...,y(m))

This loss function is also called categorical cross-entropy loss. Some authors re-

fer to it as simple cross-entropy or cross-entropy loss although this is a misnomer

since a loss composed of negative log likelihoods is always a cross-entropy between

the empirical target distribution of the training dataset and the model probability

distribution (Goodfellow et al. 2016).

The categorical cross-entropy loss can also be implemented with weights to com-

pensate for class-imbalances in the data-set. The weights are inserted by multiplying

every term of the sum in Eq. (2.49) by a weight wc dependent on the class c.

Depending on the machine learning library the loss of Eq. (2.49) is sometimes

implemented with a normalizing factor of 1
m

to obtain a mean. In the case that

weights were used the normalizing factor is the inverse of all weights employed in

the computation of the loss. That is,

1∑m
i=1

∑K
c=1 y

(i)
c wc

. (2.50)

However, a multiplication of the loss function by a scalar doesn’t affect the

optimization problem which remains

θML = arg min
θ

J(θ|Y ,Z) (2.51)

The distribution commonly used for the last layer in the case of multi-class

classification is the softmax function (Goodfellow et al. 2016), which after Eq. (2.26)

means

π(i)
c = π(y(i) = 1c|z(i);θ) = softmax(z(i)(θ))c =

exp z
(i)
c∑K

j=1 exp z
(i)
j

= ŷ(i)c . (2.52)

The tensor Z is none other than the a tensor of the feature maps of the second-

last layer of my actual model. The optimization algorithm, which updates the
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parameters – weights and biases – θ that give rise to the loss, does so by updating

them necessarily into the non-linear model that outputs Z. The mechanism through

which this happens is called error back-propagation and is addressed further

along this section.

Gradient-Based Optimization

As shown in the previous section there is a natural loss function given the particular

properties of the task of multi-class classification Eq. (2.49) and the resulting opti-

mization problem in Eq. (2.51) thanks to the maximum-likelihood principle. The

objective is then to find a vector of parameters θ that minimizes the loss function

J(θ|Y , Z).

Recalling simple calculus we know that when the gradient of a function ∇xf(x)

vanishes then the function has reached a stationary point, also called a critical point

and it is either a maximum, a saddle point or a minimum. What distingushes them

is the second derivative. If a maximum is also the highest value the function reaches

in its entire domain it is called a global maximum, viceversa for a minimum. In

theory one needs to find a solution for the equation

0 = ∇θJ(θ|Y ,Z) (2.53)

however this is analytically intractable (Bishop 2006). The main solution to find a

point that satisfies Eq. (2.53) is through a gradient-based optimization algorithm

(Goodfellow et al. 2016; Bishop 2006). The intuition behind this simple algorithm

is that the gradient of a function points towards the direction where the function

increases the fastest. By using this information one can step-wise evaluate the

gradient of the loss for a certain set of parameters θ and then update the vector

according to the newly computed gradient and opposite to it. The τ -th step of the

algorithm looks like

θ(τ) = θ(τ−1) − γ∇θJ(θ|Y ,Z)

∣∣∣∣
θ=θ(τ)

. (2.54)

The value γ is a hyperparameter – also called learning rate – and is normally

assumed to be small (Goodfellow et al. 2016; Bishop 2006).

For the computation of the actual gradient over the dataset one would, in theory,

need to evaluate the model for every example of the dataset. This is very expensive

especially in terms of memory usage and it is commonly preferred to use only a

subset of examples for every step. Further, it is normal to expect that the training

set has some redundancy in it in the form of examples that contain very similar

information and therefore contribute in the same way to the gradient. Finally, there
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are less then linear returns that come by just adding examples for the estimate of

∇θJ(θ) so that the benefit of using 100 times more memory and computation yields

an accuracy that is less than 100 times higher (Goodfellow et al. 2016).

Optimization algorithms can either use the entire training set, a single

example or a number of examples that are less than the whole training set. These

three cases are called, in order, batch or deterministic, stochastic or online,

minibatch or (minibatch) stochastic. The number of examples for every

step is also called the batch size and is another hyperparameter. It’s clear how

the deterministic approach and the online approach are just special cases of

the more general minibatch: in the first one the batch size is simply equal to

the length of the dataset whilst in the second case the same hyperparameter

is 1 (Goodfellow et al. 2016). When trying to decide which value to choose

for the batch size the key factors are memory usage, efficient employment of the

computational architecture (Goodfellow et al. 2016) and actual statistical considera-

tions such as regularization effects of a small batch size (Wilson and Martinez 2003).

In the following section I give a simple overview behind the princples of forward

propagation and error backpropagation used to compute the gradients and update

the parameters.

Forward propagation and error backpropagation

Once an architecture has been chosen and an appropriate loss is derived – thanks

to the maximmum likelihood principle – the necessary training step for updating

the parameters of the model follows a simple cicle of events. First, the loss J(θ)

is computed through forward propagation. Second, one computes the gradient of

the loss with respect to all training parameters with the backpropagation procedure.

Finally, an update of the weights and biases takes place, i.e. the trainable parameters

θ following either directly a very simple solution like Eq. (2.54) or a more complex

implementation that builds on it (Goodfellow et al. 2016).

1. Forward propagation is another way that is used to call the forward flow

of information in a network with a feedforward architecture. Given an input

x the model computes an output value ŷ which, in the case of supervised

learning – in the specific case of this project, multi-class classification – the

output value is compared to a target y. This process can go one step further

and ŷ and y can be used to calculate a loss J(θ) (Goodfellow et al. 2016).

2. In the second step of the process one computes the value of ∇θJ(θ). Even if

the architecture is fairly complex one can employ a simple algorithm, called

error backpropagation – sometimes just backpropagation – to compute
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all elements of the gradient of the cost function with respect to every single

component of the parameter vector θ. The intuition behind this algorithm is

to use the chain rule:
dz

dx
=
dz

dy

dy

dx
(2.55)

with y = g(x), z = f(g(x)) = f(y) and f, g : R → R. Eq. (2.55) can be

expanded to the multidimensional case and it is used to compute the necessary

gradients by decomposing them in smaller simple steps (Bishop 2006).

3. The last step is the parameter update step where the values obtained in

step 2 are used to compute the new values of the parameters. The simplest

way to do the update is to use Eq. (2.54). However, this is not the most

efficient algorithm (Bishop 2006) and many different algorithms are used in

the machine learning literature that build upon the vanilla one. The choice

of the update rule in gradient-descent optimizations is a matter of research;

the most notable are the stochastig gradient descent with momentum (Qian

1999), Adagrad (Duchi et al. 2011), Adadelta (Zeiler 2012) and (Kingma and

Ba 2014). In this thesis I use Adadelta (Zeiler 2012) to keep in line with

Agrawal et al. (2019).

The following section is a brief explanation of the optimization algorithm

Adadelta (Zeiler 2012) used in this project.

Adadelta: An Adaptive Learning Rate Method

As stated before, the objective of many machine learning algorithms is to minimize

a certain function, which in my case is the loss J(θ). This is done by computing an

update to the parameters ∆θ that in my case – since I decided to use a gradient-

descent based optimization procedure – has its simplest version corresponding to

the negative gradient multiplied by a learning rate γ (cf. Eq. (2.54)).

θ(τ) = θ(τ−1) + ∆θ(τ−1) (2.56)

Although with the use of the backpropagation algorithm one can easily compute

the gradients programmatically, the learning rate hyperparameter remains to be

chosen and set manually. This choice is not casual and is a delicate balance between

a risk of divergence with a too high learning rate and risk of slow training for a

too low value of the hyperparameter; this is one of the issues that the Adadelta

optimization algorithm addresses by introducing a per-dimension dynamic-learning

rate using only first-order information14 (Zeiler 2012).

14Without computing second derivatives.
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A very important and effective modification of the vanilla consists of computing

second-order derivatives and modifying the update accordingly (Goodfellow et al.

2016) such as in the case of the so-called Newton’s method (Nocedal and Wright

2006):

∆θ(τ) = H(τ)−1∇θJ(θ(τ)) = H(τ)−1g(τ) (2.57)

where H is the Hessian matrix of the second-order derivatives of J . I also introduce

a simplified notation for the gradient and use g. However, employing second-order

methods has impossible computational costs for large models (Goodfellow et al.

2016). Hence many optimization algorithms either improve the use of first-order

derivatives or try to approximate second-order information.

In the hope of estimating a good learinig rate, many approaches suggest to

employ learning rate schedulers that modify the learning rate when the training

slows down in order to avoid an oscillation around the minimum (Goodfellow et al.

2016; Nocedal and Wright 2006). However, these methods add hyperparameters to

tune the decay rate of the learning rate and do not act on a per-dimension bases

because the employ a single global learning-rate.

The simplest and best known method for improving training on a per-dimension

basis is the momentum method (Qian 1999) by accelerating progress where the

gradient points consistently in the same direction and slowing it down where the

sign changes often. The update step is composed of an exponential decay that stores

past information. Formally,

∆θ(τ) = ρ∆θ(τ−1) − γg(τ) (2.58)

where ρ is constant that controls the decay rate of the momentum term.

An additional important first-order method called Adagrad (Duchi et al. 2011)

tries to approximate some properties of second order methods by only using second

order information (Zeiler 2012) by dividing the global learning rate γ by the 2-norm15

of the previous gradients for each dimension indipendently. That is,

∆θ
(τ)
i = − γ√∑τ

t=1 g
(τ)
i

2
g
(τ)
i . (2.59)

This update rule implies that large (small) gradients are associated with a small

(large) learning rate causing the progress along each dimension to even out over

time as with second-order approaches (Zeiler 2012). However, this method has two

main drawbacks: (1) if initial gradients are large then the learning rate remains low

for the rest of the training and (2) the accumulation of squared gradients causes

15The p-norm or Lp-norm is defined as (
∑n
i=1 x

p
i )

1
p for a vector of length n. In this case I extend

the definition to a sequence of vector components and calculate the 2-norm on the time dimension.
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the denominator to continuously increase, further slowing down training. Adadelta

tries to overcome these flaws (Zeiler 2012).

The Adadelta method is based on two intuitions by the authors, I will briefly

go over both of them:

First intuition: The sum of square gradients should be limited to a window

instead of being formed out of the entire sequence of past gradients so that the de-

nominator cannot become infintely large. However storing gradients that are inside

the window is expensive therefore this window is implemented as an exponentially

decaying average of squared gradients (Zeiler 2012). I have,

E[g2](τ) = ρE[g2](τ−1) + (1− ρ)g(τ)
2

(2.60)

with E[g2](τ) being the decaying average at step τ mentioned above and ρ the decay

rate similar to Eq. (2.58). By requiring the square root of E[g2](τ) in the denominator

to keep in line with Eq. (2.59) the result is very similar to a Root Mean Square16

The new update rule reads,

∆θ
(τ)
i = − γ√

E[g2i ]
(τ) + ε

g
(τ)
i = − γ

RMS[gi](τ)
g
(τ)
i . (2.61)

for every element i of the various parameter and gradient vectors. ε is a small

constant – typically in the order of 10−6 – introduced to improve numerical stability

(Becker and Lecun 1989).

Second intuition: if the components in the update rules were to have units,

the units of the various components of vanilla SGD and momentum would both

be mismatched with respect to the parameters. The unit of the update step are

expected to be of the same type as the parameter. However, one can see in Eq. (2.58),

Eq. (2.59) and Eq. (2.61) that the update is either unitless or has units of the inverse

of the parameter (Zeiler 2012). This is not the case for second order methods such

as Newton’s method as Eq. (2.57). By rearrangin the terms one can find the units

of the term that would approximate the Hessian of Eq. (2.57). This means in terms

of units,

∆θ ∝
∂J
∂θ
∂2J
∂θ2

⇒ 1
∂2J
∂θ2

∝ ∆θ
∂J
∂θ

. (2.62)

By comparing Eq. (2.61) with Eq. (2.62) it is clear that the part missing is the

numerator (Zeiler 2012). Zeiler (2012) suggest adding an RMS similar to that of

16The Root Mean Square (RMS) is defined as RMS[x] =
√

1
n

∑n
i=1 xi

2 for a set of n values

{x1, ..., xn}. I abuse notation and extend the definition to include the root of the decaying average

of Eq. (2.60).
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Eq. (2.61) albeit delayed by one step. This provides the update rule for the Adadelta

method:

∆θ
(τ)
i = −

√
E[∆θ2i ]

(τ−1) + ε√
E[g2i ]

(τ) + ε
g
(τ)
i = −RMS[∆θi]

(τ−1)

RMS[gi](τ)
g
(τ)
i . (2.63)

with parameters ρ and ε being shared between numerator and denominator. Intro-

ducing ε in the numerator ensures that the first iterations actually starts given that

∆θ(τ=0) = 0 and that updates always happen even if the running average becomes

small (Zeiler 2012).

With very little additional computation compared to Adagrad, Adadelta is able

to remove the need for setting a manual learning rate and has the benefit of im-

plementing dynamic larning rates on a per-dimension basis. Further, it retains the

acceleration feature of momentum SGD by accumulating previous steps in the nu-

merator. From Adagrad it inherits the ability to even out progress per-dimension

with the advantage of not having a denominator that accumulates to infinty. Lastly,

the algorithm is an approximation of second-order information with only first-order

information (Zeiler 2012). For a precise account on how the Hessian was approxi-

mated see Becker and Lecun (1989).

Some implementations add additional terms to the original update rule of

Adadelta such as reintroducing a learning rate or inserting parameter decay. For

this project I employ the original adadelta optimization algorithm with parameter

listed in Table 2.4.

ADADELTA Optimizer Hyperparameters

Hyperparameter Symbol Value

Decay rate ρ 0.9

Numerical stability constant ε 10−6

Table 2.4: Hyperparameters for the Adadelta optimization algorithm used in this thesis.

2.2.12 Regularization

A very important problem in the field of machine learning is making sure that models

generalize well. If one wants a model to have predictive power this should have low

error scores not only on the training data but also on novel data. This central issue

in machine learning and more so in the case of neural networks is precisely due

to the astounding number of parameters that a model has – as an example, the

recent GPT-3 model by OpenAI has an impressive 175 billion parameters (Brown

et al. 2020). A model that is unable to generalize is said to be overfitting (Bishop

2006). With a limited number of training data and a disproportionate number of
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parameters the model finds itself learning the examples fed to it – and their inherent

noise – by ”heart” without learning any actual patterns that are really present and

that are shared between the training and the test data (Goodfellow et al. 2016).

The strategies that are designed to reduce the test error are called, as a whole,

regularization (Goodfellow et al. 2016; Bishop 2006). Finding good regularization

techniques is a very important topic of research in the deep learning community.

Following are the description of the regularization methods used for this project.

Batch Normalization

As the network parameters change during training, a layer’s input distribution also

changes. Changing parameters creates a change in the distribution in the input, re-

sulting in unwanted behavior like vanishing or exploding gradients; this phenomenon

is called Internal Covariate Shift (Ioffe and Szegedy 2015). Batch normalization tries

to address this problem by normalizing a feature map to a set mean and standard

deviation (normally a mean of 0 and a standard deviation of 1), both learnable pa-

rameters. Batch normalization is computed on fore every feature map indipendently.

Formally for a single input it reads,

BNγ,β(x)k =
xk − E[xk]√
Var[xk] + ε

· γk + βk (2.64)

with k being the activation number in a layer. x = (x1, ..., xK) is the input with K

elements. ε is a small constant for numerical staibility. γk and βk are two learnable

parameters (Ioffe and Szegedy 2015).

If the entire training set is used for every training step, this requires the mean

and the variance to be computed on the entire set. For stochastic gradient descent

this is impractical and the mean and variance on a single batch are used instead (Ioffe

and Szegedy 2015). For a batch B of m examples and omitting the k element number

(given that batch normalization is computed indipendently for every activation) the

mean µB and the variance σ2
B of the variance are computed as follows, according to

Ioffe and Szegedy (2015),

µB ←
1

m

m∑
i=1

xi (2.65)

σ2
B ←

1

m

m∑
i=1

(xi − µB)2 (2.66)

yi ←
xi − µB√
σ2
B + ε

· γ + β ≡ BNγ,β(xi) (2.67)

with yi being the output after the Batch Normalization. The layer can relearn the

original distribution by undoing the normalization if it’s the convenient thing to do.
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In order to keep track of past information a running average for µ and σ is

computed for every mini-batch with the following updating rule (Ioffe and Szegedy

2015) before the normalization step:

µb ←(1− ρ) · µb−1 + ρµb (2.68)

σ2
b ←(1− ρ) · σ2

b−1 + ρσ2
b (2.69)

where b is the batch number. ρ is the momentum for the update of the running

mean.

As stated before, Batch Normalization is employed before a non-linear activation

function to stabilize the input. Note that in the case of an affine transformation of

the type

z = g(Wu+ b) (2.70)

with an element-wise non-linearity g and learned parameters W and b, if one intro-

duces a batch normalization the bias term b is irrelevant. Mathematically,

z = g(BN(Wu+ b)) = g(BN(Wu)). (2.71)

This implies that a bias term is not needed for the layer preceding a batch normal-

ization (Ioffe and Szegedy 2015).

Further, to adopt Batch Normalization with convolutional layers, in order to

respect the parameter-sharing property, the normalization is applied jointly on el-

ements of the same feature map. This means that the learne pair of parameters γ

and β is not uinique for every activation but it is shared by an entire feature map

(Ioffe and Szegedy 2015).

Lastly, Ioffe and Szegedy (2015) notes how Batch normalization improves net-

work training time by reducing the dependence of gradients on the scale or initial

values of the parameters and allowing for a larger learning rate. Batch normalization

has a regularizing effect and reduces the need for other types of regularization such

as dropout layers.

Early stopping

If models are sufficiently large to be prone to overfitting, a common observation is

that, although the training error continues to decrease, the validation set inverts this

direction at certain point in time (Goodfellow et al. 2016). To avoid this inconve-

nience a common and easy to implement solution is to stop the training procedure

when no decrease in the validation error is detected. This method is also called

early stopping (Prechelt 1998). Practically it is implemented by checking a per-

formance metric of the model over the validation set at every epoch and the training
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is interrupted if a minimum improvement (itself a parameter) of the metric is not

detected within a certain number (called patience) of past epochs.

Loshchilov and Hutter (2017) investigated the effect of having weight decay

explicitly set in the update rule in the case of adaptive learning rate algorithms

effectively decoupling the norm-penalty from the gradient based step. The decoupled

weight-decay, as it is normally called, has been implemented in multiple machine

learning libraries for the adaptive learning rate optimization algorithms.

2.2.13 Weights Initialization

Deep learning algorithms, being iterative, need a specification of the initial values

of the parameters from which to start the training process. The model is sufficiently

complex that the majority of algorithms are very sensible to the choice of initializa-

tion. Vanishing and exploding gradients are the central effect of bad initialization

(Glorot and Bengio 2010). Some initialization points are extremely unstable and

don’t lead to a convergence of the algorithm (Goodfellow et al. 2016).

It is well accepted that rectifier networks perform better than the counterparts

using smoother activation functions such as hyperbolic tangent and sigmoid (Glorot

et al. 2011; Glorot and Bengio 2010). Nonetheless their performance can still be

affected in a negative way by a wrongly chosen initialization scheme.

LeCun et al. (1998) suggest an initialization scheme based on a uniform dis-

tribution for sigmoid activation functions such that they find themselves in their

linear range. Glorot and Bengio (2010) proposed the adoption of an initialization

method based on a scaled uniform distribution similar to LeCun et al. (1998) in

order to maintain constant variance of the gradients during backpropagation. This

initialization scheme is called Xavier or Glorot and it is used for sigmoidal acti-

vations. Always on the principles identified by LeCun et al. (1998) and improved

upon by Glorot and Bengio (2010), He et al. (2015) propose corrections for the pe-

culiarities of ReLU activation functions and compute different boundaries for the

uniform initialization distributions of the weights. This method is called Kaiming

or He initialization.

2.2.14 Hyperparameter Search

As stated previously, Deep learning algorithms have normally a set of parameters,

called hyperparameters, that influence different characteristics of the algorithm and

the way it behaves. Time, memory and quality of the model’s ability to make

accurate predictions from novel data are the most important aspects influenced by

hyperparameters (Goodfellow et al. 2016).

I will briefly discuss the some strategies that are used to choose the correct set
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of hyperparameters:

1. Manual hyperparameter tuning is easiest in terms of computational cost

but requires a very good understanding of how the various hyperparameters

affect the behaviour of the algorithm and the results. During manual tuning

the user has to balance the capacity of the model to represent the problem,

the learning algorithm’s ability to reach a minimum of the cost function and

the degree to which regularization is achieved. One needs also to pay constant

attention to the training and validation error to spot either over or underfitting.

Further, once low training error is achieved, it is generally very effective to

reach a good performance on the test set by simply increasing the training set

size and matching it with a proportionate model capacity (Goodfellow et al.

2016).

2. Grid search is a valid choice with a limited number of hyperparameters and

a limited search space. For every hyperparameter a small number of values

are selected and an algorithm trains the model for every combination of hy-

perparameter values. A clear disadvantage of this approach is the exponential

growth of the computational cost with O(nm) for m hyperparameters taking

n values (Goodfellow et al. 2016).

3. Random search is an alternative to grid search when there are more hyper-

parameters and more values involved. Hyperparameters that have a numeric

real value are sampled from a uniform distribution or from a log-uniform dis-

tribution. Whilst hyperparameters that take on discrete values are sampled

according to a Bernoulli (in case of a binary hyperparameter) or multinoulli

distribution. This approach was found to yield good hyperparameter combi-

nations much faster than grid search (Bergstra and Bengio 2012; Goodfellow

et al. 2016).

For an account on other hyperparameter tuning strategies see Bergstra et al. (2011)

2.3 Metrics

Considering the formulation of the problem as stated in Section 2.2.2 I utilize clas-

sification metrics normally employed in the case of nonprobabilistic forecasts for

discrete predictands following Wilks (2011). I briefly discuss the binary classifica-

tion case and then extend the notions to the multi-class problem.

In classification tasks a prediction can lie within one of four groups.

• True Positives written also as TP is the subset of elements correctly classified

as belonging to a certain class.



2.3 Metrics 49

• True Negatives also referred to as TN are all the elements correctly classified

as not belonging to a certain class.

• False Positives or FP are the group of elements that were wrongly classified

as belonging to a certain class.

• False Negatives or FN are all the elements wrongly classified as not belonging

to a certain class.

these groups can be organized in a 2x2 table that is commonly called a confusion

matrix or with the more general term contingency table. The confusion matrix

can be extended to multiple classes which leads to having a further subdivision of

all the classification groups except for the TP, e.g. for a 3-class problem elements

can be mis-classified as belonging to two other classes leading to a break down of

the FN.

With different combinations of the prediction/ground-truth pairs as specified

in the previous paragraph, different metrics can be obtained.

• Accuracy, also known as proportion correct, is defined as

A =
TP + TN

TP + TN + FP + FN
(2.72)

and is the ratio of correct predictions over the entirety of predictions made.

This measure is commonly monitored during training as a way to track

progress. The canonical extension to the multi-class case has the disadvantage

of not taking into account class imbalances.

• Precision is defined as

P =
TP

TP + FP
(2.73)

and is also known as positive predictive value or PPV. It’s the ratio of the

examples predicted as belonging to the relevant class that are also relevant

in reality. Put differently, it’s the probability that, given a classification to a

class c, the element really belongs to that class.

• Recall is defined as

R =
TP

TP + FN
(2.74)

and it’s the ability of the classifier to correctly identify all members that really

belong to a certain class c. It’s very commonly known as sensitivity or hit

rate. A good classifier should maximise both Precision and Recall, however in

reality there is a trade-off between the two. A measure that considers both

Precision and Recall is the F-1 measure.
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• F-measure or F1-score is the harmonic mean of Precision and Recall

F1 = 2 · P · R
P + R

(2.75)

and is a specific case of the more general Fβ-score17.

• Critical Success Index (CSI ) or Threat Score (TS ) is defined as

TS = CSI =
TP

TP + FP + FN
(2.76)

is a useful measure when the frequency of the Negatives is much higher than

the frequency of the Positives. It is similar to accuracy but it does not consider

the TN.

Another common way to quantify the goodness of forecasts is to use so-called

Skill Scores. This measure is interpreted as the improvement over a reference

forecast. With a generic measure of Accuracy (different from the accuracy previously

defined) the skill score is defined as

SSref =
A− Aref

Aperf − Aref

(2.77)

where A is the measure of accuracy and the subscripts refer to the reference forecast

(ref) and the perfect forecast (perf).

• Heidke Skill Score is a common skill score popularly known thanks to Heidke

(1926) and uses as the accuracy measure the one defined in Eq. (2.72). The

reference accuracy measure is the accuracy by random forecasts independent

from observations. It uses marginal probabilities inferred from the relevant

contingency table. The probability of a correct attribution to a class is the

multiplication of the probability that an element belongs to that class times

the probability that it is observed as belonging to that class. Similarly one

can derive the probability of correctly not assigning a member to a class. One

then obtains

HSS =
2(TP · TN− FP · FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
(2.78)

that yields 0 for no improvement over the reference forcast and 1 for a perfect

forecast.

For the multiclass classification problems other than a simple comparison of

the metrics computed for the individual classes, one can aggregate them to have a

17The Fβ-score is defined as Fβ = (1− β2) P·R
β2·P+R
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single value of the goodness of the model or forecast. Some metrics have their own

extension such as the HSS

HSSmulti =

∑K
c=1 p(fc, oc)−

∑K
c=1 p(fc)p(oc)

1−
∑K

c=1 p(fc)p(fc)
(2.79)

where p(fc, oc) denotes the probability that target and forecast correspond for the

class c (the accuracy of Eq. (2.72)), p(fc) is the probability that class c is forecast

and p(oc) is the probability that class c is observed. These probabilities for the K

classes are obtained with a frequentist approach from the K×K confusion matrix.

Another more direct way to aggregate a metric M for the various K classes is

the macro average

M =
1

K

K∑
c=1

Mc (2.80)

which works well when, as is the case in some multiclass classification problems, one

of the classes is underrepresented in the dataset but is of high importance.

The micro average in turn computes a metric M globally. For multi-class

classification problems, the micro average of F-score, precision, recall is equal to the

accuracy. This way of averaging strongly underestimates minority classes if they

appear in very low frequency.

The weighted average weights the metrics according to their frequency in

the dataset and compensates for class imbalance. Hence, it is preferable not to use

this averaging technique if the minority classes are important.

In this project I use Precison, Recall, F-Score, CSI and HSS both for every class

independently and as a macro average to evaluate the performance of the model.
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Chapter 3

Results

In this section I will report the statistics of the RADNET dataset leading to the

choice of the weights for the cross-entropy loss. The distribution of rainfall rates is

assessed. Finally, I give the final results for the relevant classification task.

3.1 Dataset Statistics

Rainfall patterns vary greatly from location to location which in turn affects the

distribution and frequency of the precipitation rainfall rates picked up through radar.

The RADOLAN dataset is no exception. Given that this project has as goal to

replicate to some extent the model by Agrawal et al. (2019) I verify that induced

choices are at least to a first glance acceptable. When it comes to dividing rainfall

into classes for the classification problem Agrawal et al. (2019) decides to adopt

three different thresholds for this subdivision. These are 0.1 mm/h, 1 mm/h and 2.5

mm/h. However, differences in the structure of the problem of this project and the

one by Agrawal et al. (2019) exist. (1) The categorization problem by Agrawal et al.

(2019) outputs images that are compared with radar derived precipitation estimates

at 1 h. These estimates are outputted every 10min. Conversely, for this project

both the inputs and outputs are given every at an hourly rate from each other. (2)

Agrawal et al. (2019) structures the problem as multiple binary classification tasks

whereas this project is structured as one single multi-class classification task. (3)

Oversampling frames with precipitation is the method used by Agrawal et al. (2019)

to compensate for the fact that the majority of pixels is rainless. In this project I

simply ignore the scenes where all of the input frames have no rainy pixel. I also

add weights to the simple cross-entropy loss.

The analysis of the dataset then yields class distributions for the different

dataset subsets (training, validation, testing) as in Table 3.1 and in Fig. 3.1. A

summary of the percentages of scenes used out of all scenes available and their final

53
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proportion in the dataset is given in Table 3.2.

Frequency % Classes

Class Label Class Interval Training Validation Test

0 [0, 0.1) 89.4% 88.02% 87.78%

0.1 [0.1, 1.0) 8.34% 9.46% 9.57%

1.0 [1.0, 2.5) 1.81% 2.05% 2.2%

2.5 [2.5,∞) 0.42% 0.47% 0.45%

Table 3.1: Frequencies of the different classes in the target channel for every subset of the

dataset. The class frequencies for the training subset are used to determine the weights

for the weighted cross-entropy loss. A bar chart from the data contained in this table is

depicted in Fig. 3.1.

Scenes Selection

Training Validation Test

Available Scenes 63336 10176 10200

Selected Scenes 58784 7116 7074

Percentage Selected 92.8% 69.9% 69.3%

Proportion in Dataset 80.6% 9.8% 9.7%

Table 3.2: Breakdown of the selection of scenes from all the available scenes. The third

row is computed by dividing the selected scenes by the available scenes. The proportion

in the total dataset is computed by dividing the selected scenes by the sum of all selected

scenes. A scene is discarded if and only if all the input frames are rainless.

Weights for Training

To counteract the class imbalance, using weights in the cross-entropy loss of the

model is normally the preferred choice in the deep learning literature. These weights

are typically the inverse of the frequency of the classes. That means, following the

frequencies as reported in Table 3.1,

Class 0
1

89.4

Class 0.1
1

8.34

Class 1.0
1

1.81

Class 2.5
1

0.42
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Figure 3.1: Bar chart of the precipitation class (see Table 2.1) frequencies for training,

validation and test subset of the dataset. The frequencies sum to 1 for each one of the

subsets. The chart is computed using data from Table 3.1.

Other methods of balancing a cross-entropy loss exist, such as the employment of

an effective number of samples (Cui et al. 2019) that builds upon the reasoning that

as the number of samples increases, the additional benefit of a newly added data

point diminishes.

Skewness of inputs

Knowing that high precipitation rates are infrequent and that in general very skewed

distributions for the layers of a neural network are not desireable, I assess the fre-

quency and shape of the distribution of the values for the raw precipitation rates of

the RADOLAN dataset as those are the ones that are fed as input to the model.

In order to make the distribution less skewed and bring it closer to a normal

distribution, a common solution is to transform the data by taking the (natural)

logarithm; for instance Ayzel et al. (2020) decide to transform the input to the

model by taking the natural logarithm as in

xtransformed = ln(xraw + 0.01) (3.1)

where 0.01 is added to the raw input to avoid the logarithm of zero. Fig. 3.2 shows

the implication of this transformation for the distribution of the precipitation values.
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Figure 3.2: Relative frequency of all precipitation values for the pixels of the frames

in the RADOLAN dataset. The distributions are computed for the training, validation

ad test subsets of the dataset. (a) displays the distribution after the transformation of

Eq. (3.1), hence the distribution of the values fed to the model. (b) is the distribution of

the values displayed in log-scale without any addition but it does not contain the most

frequent value 0 in order to better understand the distribution among the other values.
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3.2 Model Performance

Hyperparameter Search

To avoid a computationally expensive procedure, the hyperparameters were divided

in two groups. (1) Those manually tuned and (2) those picked by utilizing the

available literature.

The manual search was done by trial and error considering all the metrics on

the validation set, paying more attention to the HSS and the CSI. Table 3.3 sums

up the hyperparameters found through this process.

Hyperparameters

Name Value

batch size 32

depth 6

epochs 10

Table 3.3: The hyperparameters found via manual tuning.

Testing

Using the model produced through the hyperparameters of Table 3.3 the metrics

are computed on the testing subset. The results are summed up in Table 3.4

Metric Cl. 0 Cl. 0.1 Cl. 1 Cl. 2.5 Macro average

Precision
0.988 0.346 0.309 0.218 0.465

0.943 0.433 0.308 0.227 0.478

Recall
0.861 0.653 0.585 0.609 0.677

0.943 0.433 0.308 0.226 0.478

F1
0.921 0.452 0.404 0.321 0.525

0.943 0.432 0.308 0.227 0.478

CSI
0.853 0.292 0.253 0.191 0.397

0.893 0.276 0.182 0.128 0.370

HSS
0.579 0.438 0.404 0.321 0.436

0.583 0.441 0.314 0.229 0.392

Table 3.4: The results of the model compared to persistence applied to the test subset of

the dataset. For every metric the upper row refers to the results of the model whilst the

lower row refers to persistence. Higher values are better. The best values for each class

and metric are highlighted.
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As Table 3.4 shows the performance of the model is generally better than per-

sistence for higher precipitation classes suggesting an influence of the weights for

the loss giving higher importance to higher precipitation. The generally high values

for precision and recall for the lowest precipitation class can be explained by the

overall higher amount of tiles with no precipitation making it an ”easy guess”. The

most significant information is to be found in the overall better prediction skill of

the model compared to persistence for the remaining classes as the macro-averages

testify.

Figure 3.3: The normalized confusion matrix for the predictions made by the model on

the test set. Normalization occurs on the rows. The labels 0, 1, 2, 3 stand for the classes

0, 0.1, 1, 2.5 respectively.

Fig. 3.3 is the confusion matrix for the task. As it suggests the majority of

wrong classifications happen with neighbouring classes, meaning that the model is

able to understand the shape of the precipitation but has difficulties in assessing the

intensity correctly.

3.3 Case Studies

To visually assess the goodness of the model I analyse two case studies, the first

scene is the one at 2020-02-09T1950Z and the second one is at 2021-03-11T0150Z.
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3.3.1 First Case Study: 2020-02-09T1950Z

Synoptic Situation

The synoptic situation near the time of the input and output of the neural network is

addressed through the use of the model results produced by NOAA’s model Global

Forecast System (GFS)1 and visualized through Ertel22. Geopotential height and

equivalent potential temperature at 850hPa are employed. Fig. 3.4 shows the relative

figure for the model output at 2020-02-10T0000Z where the presence of a cold front is

evident in the northern part of Germany near the area of interest (cf. Fig. 2.6). The

orientation of the front is SW-NE. Additionally, given the orientation of the isolines

representing the geopotential, the direction of the geostrophic flow is easterly. I

also assess the 1h accumulated precipitation associated with this front by observing

the output of the ICON (EU) model3 through Ventusky4 at 2020-02-10T0300Z.

Fig. 3.5 shows the relative image. The precipitation bands near the area of interest

in northern Germany (again cf. Fig. 2.6) are oriented in a similar direction to the

cold front i.e. SW-NE.

Model Prediction

Following the synoptic situation described in the previous section I analyze the

actual output of the model given the input sequence. Fig. 3.6 shows the scene for

2020-02-09T1950Z. This timestamp is the timestamp of the first input image (upper

left in the group of 6 images). The other 5 input images are those depicted in the

group made of 6 images in Fig. 3.6 and all are of precipitation accumulated in a

1h interval. They are separated by 1h from each other. The model then applies

a series of convolutions (cf Section 2.2.6) that abstract the features of the input

images in a representational space that the model itself learns during the training

process. The spatial resolution is reduced for every layer that the input data goes

through in the encoding phase (cf. Section 2.2.10) but is later taken back to the

original resolution in the decoding phase. In this last phase the model rebuilds a

plausible output image using information from the encoding phase thanks to the

skip connections (cf. Section 2.2.8). The timestamp of the output of the model is

6h after the first input image, hence 2020-02-10T0150Z and it is shown in the last

row on the left of Fig. 3.6, it is confronted with the ground truth on the same row on

the right. This allows for a straightforward comparison and shows if the model has

acquired the ability to infer the spatial distribution of the precipitation correctly.

1https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
2http://ertel2.uibk.ac.at:8080/
3more on the ICON (EU) model to be found at

https://www.dwd.de/EN/ourservices/nwp forecast data/nwp forecast data.html
4https://www.ventusky.com/
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Figure 3.4: Output of the GFS model for the timestamp 2020-02-10T0000Z showing

equivalent potential temperature and geopotential height at 850hPa. The equivalent po-

tential temperature is in C, shaded and with lines at 2°C distance. The geopotential

height is shown in white contours and in 10m units. The spacing between the lines is 4.

The SW-NE cold front in the area of interest in norther Germany is evident. The flow is

assessed through the geopotential height and is easterly. Figure produced with the help

of ERTEL2.

As Fig. 3.6 shows the model is indeed able to predict precipitation rainbands going

in the SW-NE direction as is seen in the ground truth and in Fig. 3.5. However, it is

clear that the model predicts higher precipitation rates than are actually observed.

An hypothesis for this behaviour is the influence of the weights employed for the

loss that give very high importance to higher precipitation rates.

3.3.2 Second Case Study: 2021-03-11T0150Z

Synoptic Situation

Similarly to the first case study, I assess the synoptic situation at a time approxi-

mately near to the input and output of the neural network (the latter is 6h after the

input image, hence 2021-03-11T0750Z) using the same tools. Fig. 3.7 shows the out-

put of GFS and shows the presence of a warm front that is starting to enter the area

of interest in northern Germany at 2021-03-11T0000Z. Its orientation is S-N. The

geostrophic flow associated to the system, being parallel to the isolines of geopoten-
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Figure 3.5: 1h precipitation over Germany at 2020-02-10T0300Z according to the ICON

(EU) model. The frontal structure after it has passed over the area of interest and its

approximate SW-NE orientation can be seen clearly. Figure produced with Ventusky.
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Figure 3.6: Example of input and output and ground truth for 2020-02-09T1950Z. The

input part is made of the six images in the top. The prediction is the left image of the

lower two and the ground truth is to be found on the right of the prediction. The input

is fed to the model as continuous precipitation values but it is depicted in precipitation

classes to better compare them with the output. The labels on the right refer to the

precipitation classes. The coordinates are in km from the bottom left corner. The order of

the inputs is left to right top to bottom. The interval between every one is one hour and

all are 1h cumulative precipitation values. The model can be seen to correctly predict the

orientation of the precipitation bands. At the same time it predicts higher precipitation

values than the ground truth.

tial height, is found to be easterly to south-easterly. The rainbands associated with

this front can be seen in the ICON (EU) model output taken at 2021-03-11T0900Z

after they have left the area of interest and are in the SW-NE direction.
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Figure 3.7: Output of the GFS model for the timestamp 2020-03-11T0000Z showing

equivalent potential temperature and geopotential height at 850hPa. The equivalent po-

tential temperature is in C, shaded and with lines at 2°C distance. The geopotential

height is shown in white contours and in 10m units. The spacing between the lines is 4.

The N-S warm front approaching the area of interest in northern Germany is evident. The

geostrophic flow, parallel to the isolines of geopotential height, is easterly to south-easterly.

Figure produced with the help of ERTEL2.

Model Prediction

Following the synoptic situation, I assess again the ability of the model to predict

high level features such as the direction of the precipitation bands. I find in Fig. 3.9,

similarly to the first case, that the model is able to predict the direction of the

precipitation bands but outputs higher precipitation rates than the ground truth.
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Figure 3.8: 1h precipitation over Germany at 2021-03-11T0900Z according to the ICON

(EU) model. The frontal structure after it has passed over the area of interest can be seen

over northern Germany. Its orientation is SW-NE. Figure produced with Ventusky.



3.3 Case Studies 65

Figure 3.9: Example of input and output and ground truth for 2021-03-11T0150Z. The

input part is made of the six images in the top. The prediction is the left image of the

lower two and the ground truth is to be found on the right of the prediction. The input

is fed to the model as continuous precipitation values but it is depicted in precipitation

classes to better compare them with the output. The labels on the right refer to the

precipitation classes. The coordinates are in km from the bottom left corner. The order of

the inputs is left to right top to bottom. The interval between every one is one hour and

all are 1h cumulative precipitation values. The model can be seen to correctly predict the

orientation of the precipitation bands. At the same time it predicts higher precipitation

values than the ground truth.
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Chapter 4

Discussion and Conclusions

In this chapter I will discuss the results by answering the research questions followed

by a part on the decision taken for the methodology. Finally, I will compare the

results with similar studies and state some possible developments.

4.1 Results

The answers to the research questions of Section 1.3 follow:

1. Does the employed neural network outperform persistence? For most

of the metrics and classes the neural network outperforms persistence. This is

also what the macro-averages indicate. The macro averaged HSS for the neural

network is 0.436 compared to 0.392 for persistence. The macro-averaged CSI

is 0.397 for the neural network compared to 0.370 for persistence.

2. How does the model’s performance depend on the rainfall intensity?

The performance of the model, in absolute terms decreases with rainfall inten-

sity but gets generally better compared to persistence for increasing rainfall

intensity.

3. The model of Agrawal et al. (2019) after which this project is in-

spired outperformed persistence for all precipitation classes. Can

this result be confirmed? The model of this thesis was also found to gener-

ally outperform persistence albeit not to the same degree as the original paper.

However, the ability of the model to abstract features as indicated by Figs. 3.6

and 3.9 suggests that with further hyparameter tuning a similar performance

could be achieved.
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4.2 Discussion of the Methodology

In this section I will discuss the decisions taken as regards to the methodology.

4.2.1 Choice of the Network Architecture

The network architecture of this project is chosen to resemble the ubiquitous U-Net

architecture introduced by Ronneberger et al. (2015) that was found to perform well

on segmentation tasks. As for the particular details of the various layers composing

the network, I followed Agrawal et al. (2019). I treated the model depth as a hyper-

parameter given that Ayzel et al. (2020), trying to solve a similar problem, adopts a

depth of 4 (instead of 7 as in Agrawal et al. (2019). An advantage of lower depth is

decreased memory footprint and computational requirements. However, not enough

parameters can affect the model performance. Unfortunately, Agrawal et al. (2019)

are not exhaustive in their description of the architecture. The lacking information

was compensated by adopting solutions available in the general deep learning liter-

ature. The architecture of short-range skip connections when downsampling blocks

are applied and the number of input feature maps to the blocks are different from

the number of output feature maps (Drozdzal et al. 2016).

4.2.2 Changes in the RADOLAN Routine

The RADOLAN calibration routine described in Section 2.1.2 is subject to constant

changes that are brought into the operational procedure. Weigl (2021a) keeps track

of these changes. Some are as as simple as additional ground rain gauges or the

dismissal and addition of radar stations. Other changes affect the algorithm of the

routine itself, such as better corrections for the shadowing of radar signals by the

orography. The DWD has until now reprocessed the RADOLAN database twice,

these data are available and could be used to improve the model performance.

4.2.3 Choice of the Training, Validation and Test Sets

It is common practice in the artificial intelligence literature to subdivide the dataset

into three subsets, the training set used for optimizing the model, the validation set

to compare the different hyperparameter choices and the test set to produce the final

data later reported as the actual performance of the model. The proportions 80:10:10

are common choice for deep learning tasks. The choice of chronological order was

taken partly also considering the changes in the RADOLAN calibration procedure,

hence allowing the final performance measure to be closer to the performance if

the model were to be applied to very recent data. A significant drawback of this

approach is that it relies on the assumption that the time-series is stationary, i.e. no
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changes occurred to the underlying processes, in this case the climate. An alternative

way to asses model performance avoiding the use of the computationally expensive

cross validation, would be to choose the training set by randomly selecting members

of the dataset.

4.2.4 Area and Time-Resolution Selection

Orography is known to introduce error in the final product derived from radar

reflectivity measurements. For simplicity and to remain within the investigative

and non-operational nature of the project I decided to select a limited area in a flat

region of Germany completely within the RADOLAN RW product’s domain. As

it pertains to the choice of 1hr cumulative precipitation data, this was driven by

the lack of literature applying deep learning weather prediction at those timescales.

Agrawal et al. (2019) uses 7 images at 10min distance from each other taken from

the multi radar multi sensor (MRMS) dataset and predicts the MRMS image at

1h after the last image of the input. Ayzel et al. (2020) in contrast uses 4 images

at 5min interval from the RADOLAN RY product to predict a similar image 5min

after the last one of the input series.

4.2.5 Alternative Comparisons

The model in this thesis was compared only with the so-called persistence prediction

that works by assuming that the forecast is equal to the data at the last available time

before the forecast. Despite its simplicity, persistence is not a trivial prediction to

outperform and serves as first intuitive benchmark to understand the performance

of a prediction method. Agrawal et al. (2019) after which this thesis is partly

inspired, compared their model with both persistence and the HRRR model. Ayzel

et al. (2020) too compared their model against persistence. They also compared it

with the results of the rainymotion (Ayzel et al. 2019) optical flow library albeit

at a 5min time resolution. The rainymotion library was shown to outperform

the RADVOR (Deutscher Wetterdienst 2022c) operational nowcast model of the

DWD (Ayzel et al. 2019). Given the similarity of the dataset between this study

and Ayzel et al. (2020) further comparisons could include the accumulated hourly

product produced by the RADVOR nowcast. The application of an optical flow

algorithm such as rainymotion to the 1h accumulated rainfall data needs to be

investigated.
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4.2.6 Hyperparameters Optimization

For the optimization of the hyperparameters of the model, I applied the manual

search using knowledge guided by the literature as regards to the most plausible

hyperparameter choice. As discussed in Section 2.2.14 different methods to find the

best combination of hyperparameters exist. It is likely that the application of an

algorithm such as random search Bergstra and Bengio (2012) could improve the re-

sults. However, considering the investigative purpose of this project, the increased

amount of time and resources needed to train the model with multiple hyperparam-

eters combinations would be beyond the current scope.

4.2.7 Class Imbalances

An imbalanced dataset is a common problem in classification tasks. The relevance

is even more pronounced if the less frequent class is also of higher importance. For

this project, as shown in Table 3.1 the high precipitation classes are vastly underrep-

resented in the dataset compared to the dominant no-rainfall class. The solution I

employed, following a common practice in the deep learning community is to assign

weights proportional to the inverse of the frequency of the classes for the purpose of

computing the loss. However, this choice seems to lead to an overprediction of high

rainfall classes. The choice of weights can be considered as part of hyperparameter

tuning. A possible alternative way to address the class imbalance problem would

be to adopt so-called effective number of samples Cui et al. (2019) that tries to

to capture the diminishing marginal benefits by using more data points of a class

allowing for less compensation of the imbalance.

4.3 Comparison with Similar Studies

The literature on precipitation nowcasting is fairly recent and therefore the available

studies are somewhat limited in number and scope. Nonetheless, some studies that

focus on a task similar to the one addressed in this thesis exist. In these studies the

precipitation nowcasting problem is almost always addressed at a time resolution

of 5min between each input frame. Agrawal et al. (2019) and Ayzel et al. (2020)

propose a network architecture (U-Net) and study setup most similar to the one

of this project. They both found better performance of their respective models for

their tasks compared to persistence, this result remained for increasing lead times

in the case of Ayzel et al. (2020) where the output of the model was used as input

for subsequent frames. The two studies compared the U-Net to the HRRR model

and optical flow respectively with input frames 10min and 5min apart. Such a

comparison (i.e. a comparision with a a model used in operational settings) could
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not be made for the neural network used in this thesis but it is reasonable to assume

that with better hyperparameter tuning and small changes to the architecture a

similar result could be achieved.

Shi et al. (2017) propose a recurrent architecture based on long and short term

memory (LSTM) called TrajGRU. The peculiarity of the model is to learn the con-

nection structure between the hidden states. It utilizes the current input and the

previous state to generate a local neighbourhood that should influence a certain lo-

cation at a every timestamp. The model was compared to traditional Convolutional

Neural Networks and to the predecessor of TrajGRU: ConvGRU. In an offline setting

a comparison with persistence and the model was made. In all cases the absolute

performance of the model decreases as the precipitation rate increases. TrajGRU

was found to always outperform all other models as well as persistence.

In the study by Ravuri et al. (2021) the authors test a Generative Adversar-

ial Network (GAN) architecture against three competitive models: a U-Net imple-

mentation, PySTEPS (Pulkkinen et al. 2019) and an implementation of MetNet

(Sønderby et al. 2020). The GAN consists of two parts, a generator and a discrimi-

nator. The generator is responsible for creating images (given an input) that should

be as similar as possible to the ones in the dataset. The discriminator has to learn

to distinguish between a real example and a generated one. Ravuri et al. (2021)

showed that the GAN is chosen by expert forecasters from the Met Office as the one

with the highest usefulness compared to the alternative proposed models.

Overall the studies suggest that the deep learning perspective is a promising

approach to the precipitation nowcasting problem. In this regard this thesis confirms

the identified trajectory and warrants further investigation into the application of

neural networks to the 1h time scale. Possible extensions include the study of the

behaviour of a U-Net with additional input frames, additional physical variables

other than precipitation, additional output frames, the utilization of the model

outputs as inputs for extending the lead time of the prediction (as in Ayzel et al.

(2020)). All these developments have as a precondition the betterment of the current

model, specifically with better hyperparameter tuning and a different weighting

strategy for the various precipitation classes.
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Appendix A

Software and Hardware

The software was written in Python 3.8. The RADOLAN dataset was handled

through wradlib (Mühlbauer et al. 2022), xarray (Hoyer et al. 2022), dask (Dask

Development Team 2016) and zarr (Miles et al. 2020). The confusion matrix was

done with the help of scikit-learn (Pedregosa et al. 2011). The majority of the plots

are produced with matplotlib (Caswell et al. 2019) unless specified otherwise. The

deep learning library used is Pytorch (Paszke et al. 2019) wrapped within Pytorch-

Lightning (Falcon et al. 2020). The computations partly happend on the Vienna

Scientific Cluster1 4 (VSC4) compute nodes, partly on VSC3 using the GPU nodes

and partly on Google Compute Cloud.

1https://vsc.ac.at//systems/
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